1
|
Zhang Y, Lu J, Li W, Huang J, Jiang H, Liang B, Wang B, He D, Chen H. A scalable, robust, and highly oriented flexible composite film inspired by a "brick-mortar" pillared structure for lithium ion batteries. J Colloid Interface Sci 2025; 683:178-188. [PMID: 39673930 DOI: 10.1016/j.jcis.2024.12.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/07/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
Macro-assembled silicon-based films can be taken into account as a possible anode material for the lithium ion batteries (LIBs) in portable electronics. However, most previously proposed preparation strategies are labor-intensive, intricate, and not appropriate for large-scale manufacturing. Herein, a multifunctional flexible silicon/carbon nanotube/reduced graphene oxide (Si/CNT/rGO) film was fabricated by one-step coating method based on the lyotropic nematic liquid crystals of graphene oxide (GO). The composite film's structure is made up of stacked rGO nanosheets, with nano-Si and CNT interspersed between the layers, resembling a "brick-mortar" pillared configuration. The prepared Si/CNT/rGO film demonstrates an exceptional tensile strength, reaching up to 134 MPa, and manifests commendable lithium storing properties in terms of initial charge capacity (1885 mAh/g at 200 mA/g) and cyclability (1376.4 mAh/g beyond 200 cycles). The straightforward preparation method offers a fresh path to create stable and mechanically robust composite film for advanced engineering applications.
Collapse
Affiliation(s)
- Yanlin Zhang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Junhong Lu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Weizuo Li
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Jie Huang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Haoyang Jiang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Ben Liang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Benyuan Wang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Dafang He
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, Jiangsu Province, China.
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, Jiangsu Province, China.
| |
Collapse
|
2
|
Xu Y, Zhang Y, Hu Q, Li H, Jiao F, Wang W, Zhang S, Du H. In Situ Copper Coating on Silicon Particles Enables Long Durable Anodes in Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5058-5066. [PMID: 38231084 DOI: 10.1021/acsami.3c13969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Addressing the significant obstacles of volume expansion and inadequate electronic conductivity in silicon-based anode materials during lithiation is crucial for achieving a long durable life in lithium-ion batteries. Herein, a high-strength copper-based metal shell is coated in situ onto silicon materials through a chemical combination of copper citrate and Si-H bonds and subsequent heat treatment. The formed Cu and Cu3Si shell effectively mitigates the mechanical stress induced by volume expansion during lithiation, strengthens the connection with the copper substrate, and facilitates electron transfer and Li+ diffusion kinetics. Consequently, the composite exhibits a reversible specific capacity of 1359 mA h g-1 at 0.5 A g-1 and maintains a specific capacity of 837 mA h g-1 and an 83.5% capacity retention after 400 cycles at 1 A g-1, surpassing similar reports on electrochemical stability. This facile copper plating technique on silicon surfaces may be used to prepare high-performance silicon-based anodes or functional composites in other fields.
Collapse
Affiliation(s)
- Yanan Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yu Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qing Hu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hao Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Feng Jiao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenkai Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shiyue Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hongbin Du
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Qiu Z, Wu A, Yu W, Li A, Dong X, Huang H. Si-TiSi2 clusters eutectic nanoparticles as high initial coulombic efficiency anodes for lithium-ion batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Zhang BH, Wen WX, Wang HY, Hou YL, Chen JZ, Zhao DL. Core-shell structured Si@Cu3Si-Cu nanoparticles coated by N-doped carbon as an enhanced capacity and high-rate anode for lithium-ion batteries. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Jiang M, Chen J, Zhang Y, Song N, Jiang W, Yang J. Assembly: A Key Enabler for the Construction of Superior Silicon-Based Anodes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203162. [PMID: 36045088 PMCID: PMC9596840 DOI: 10.1002/advs.202203162] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Silicon (Si) is regarded as the most promising anode material for high-energy lithium-ion batteries (LIBs) due to its high theoretical capacity, and low working potential. However, the large volume variation during the continuous lithiation/delithiation processes easily leads to structural damage and serious side reactions. To overcome the resultant rapid specific capacity decay, the nanocrystallization and compound strategies are proposed to construct hierarchically assembled structures with different morphologies and functions, which develop novel energy storage devices at nano/micro scale. The introduction of assembly strategies in the preparation process of silicon-based materials can integrate the advantages of both nanoscale and microstructures, which significantly enhance the comprehensive performance of the prepared silicon-based assemblies. Unfortunately, the summary and understanding of assembly are still lacking. In this review, the understanding of assembly is deepened in terms of driving forces, methods, influencing factors and advantages. The recent research progress of silicon-based assembled anodes and the mechanism of the functional advantages for assembled structures are reviewed from the aspects of spatial confinement, layered construction, fasciculate structure assembly, superparticles, and interconnected assembly strategies. Various feasible strategies for structural assembly and performance improvement are pointed out. Finally, the challenges and integrated improvement strategies for assembled silicon-based anodes are summarized.
Collapse
Affiliation(s)
- Miaomiao Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Junliang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Yingbing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Nan Song
- State Key Laboratory of Chemical EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Wan Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
- Institute of Functional MaterialsDonghua UniversityShanghai201620China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
- Institute of Functional MaterialsDonghua UniversityShanghai201620China
| |
Collapse
|
6
|
Gao J, Zuo S, Liu H, Jiang Q, Wang C, Yin H, Wang Z, Wang J. An interconnected and scalable hollow Si-C nanospheres/graphite composite for high-performance lithium-ion batteries. J Colloid Interface Sci 2022; 624:555-563. [DOI: 10.1016/j.jcis.2022.05.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/17/2022] [Accepted: 05/22/2022] [Indexed: 10/18/2022]
|
7
|
Li N, Liu Y, Ji X, Feng J, Wang K, Xie J, Lei G, Liu X, Guo X, Zhang J. Polydopamine-mediated synthesis of Si@carbon@graphene aerogels for enhanced lithium storage with long cycle life. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Rod-like Ni 0.5Co 0.5C 2O 4·2H 2O in-situ formed on rGO by an interface induced engineering: Extraordinary rate and cycle performance as an anode in lithium-ion and sodium-ion half/full cells. J Colloid Interface Sci 2021; 607:1153-1162. [PMID: 34571302 DOI: 10.1016/j.jcis.2021.09.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 11/23/2022]
Abstract
Transition metal oxalates have attracted wide attention due to the characteristics of the conversion reaction as anode materials in lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs), However, there are huge volume expansion and sluggish circulation dynamics during the reversible Li+ and Na+ insertion/extraction process, which would lead to unsatisfactory reversible capacity and stability. In order to solve these problems, a rod-like structure Ni0.5Co0.5C2O4·2H2O is in-situ formed on the reduced graphene oxide layer (Ni0.5Co0.5C2O4·2H2O/rGO) in a glycol-water mixture medium via an interface induced engineering strategy. Benefitting from the synergistic cooperation of nano-diameter rod-like structure and high conductive rGO networks, the experimental results show that the prepared Ni0.5Co0.5C2O4·2H2O/rGO electrode has predominant rate performance and ultra-long cycle stability. For the LIBs, it not only exhibits an ultrahigh reversible capacity (1179.9 mA h g-1 at 0.5 A g-1 after 300 cycles), but also presents outstanding rate and cycling performance (646.5 mA h g-1 at 5 A g-1 after 1200 cycles). Besides, the Ni0.5Co0.5C2O4·2H2O/rGO electrode displays remarkable sodium storage capacity of 221.6 mA h g-1 after 100 cycles at 0.5 A g-1. Further, the extraordinary electrochemical capability of Ni0.5Co0.5C2O4·2H2O/rGO active material is also reflected in two full-cells, assembled using commercial LiCoO2 as cathode for LIBs and commercial Na3V2(PO4)3 as cathode for SIBs, both of which can show wonderful specific capacity and cycling stability. It is found in in-situ Raman experiments that the reversible changes of oxalate peaks are monitored in a charge/discharge process, which is scientific evidence for the transform reaction mechanism of metal oxalates in LIBs. These findings not only provide important ideas for studying the charge/discharge storage mechanism but also give scientific basis for the design of high-performance electrode materials.
Collapse
|
9
|
Light-assisted synthesis of copper/cuprous oxide reinforced nanoporous silicon microspheres with boosted anode performance for lithium-ion batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Jing N, Xu S, Wang Z, Wang G. Enhanced Electrochemical Performance and Safety of Silicon by a Negative Thermal Expansion Material of ZrW 2O 8. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30468-30478. [PMID: 34161067 DOI: 10.1021/acsami.1c01088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Silicon (Si) faces big challenges in serious volume changes for applications in spite of its high theoretical capacity. Herein, a novel and facile method was proposed to decrease the volume change by simultaneously in situ absorbing the generated heat of only Si using a negative thermal expansion (NTE) material of ZrW2O8. The Si modified with 2 wt % of ZrW2O8 exhibits excellent structural integrity, electrochemical performance, and safety under various conditions, especially at elevated temperatures. Its reversible capacities can remain 1187.2 mA h g-1 after 50 cycles and 643.8 mA h g-1 after 100 cycles at 2 A g-1 (∼199 and ∼190% higher than that of Si, respectively) at 25 °C. In addition, 930.6 mA h g-1 is maintained after 50 cycles at 60 °C (∼219% higher than that of Si). As current densities increase to 2 and 4 A g-1, the values still remain 1389.4 and 757.5 mA h g-1, respectively, much higher than that of Si. Furthermore, the strain of Si is reduced by 37.2% using ZrW2O8 at 60 °C. Various products were analyzed, and the possible enhanced mechanism was discussed using multiple techniques. These findings exhibit significant potential for the improvement of energy materials using NTE materials by combining thermal effects and volume changes as well as the improved interface behavior.
Collapse
Affiliation(s)
- Nana Jing
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Sheng Xu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhiqiang Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Guixin Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
11
|
Defect-repaired reduced graphene oxide caging silicon nanoparticles for lithium-ion anodes with enhanced reversible capacity and cyclic performance. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Jiang M, Chen J, Ma Y, Luo W, Yang J. Electrostatic Interactions Leading to Hierarchical Interpenetrating Electroconductive Networks in Silicon Anodes for Fast Lithium Storage. Chemistry 2021; 27:9320-9327. [PMID: 33855743 DOI: 10.1002/chem.202100174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Indexed: 11/11/2022]
Abstract
Recently, the frequency of combining MXene, which has unique properties such as metal-level conductivity and large specific surface area, with silicon to achieve excellent electrochemical performance has increased considerably. There is no doubt that the introduction of MXene can improve the conductivity of silicon and the cycling stability of electrodes after elaborate structure design. However, most exhaustive contacts can only improve the electrode conductivity on the plane. Herein, a MXene@Si/CNTs (HIEN-MSC) composite with hierarchical interpenetrating electroconductive networks has been synthesized by electrostatic self-assembly. In this process, the CNTs are first combined with silicon nanoparticles and then assembled with MXene nanosheets. Inserting CNTs into silicon nanoparticles can not only reduce the latter's agglomeration, but also immobilizes them on the three-dimensional conductive framework composed of CNTs and MXene nanosheets. Therefore, the HIEN-MSC electrode shows superior rate performance (high reversible capacity of 280 mA h-1 even tested at 10 A g-1 ), cycling stability (stable reversible capacity of 547 mA h g-1 after 200 cycles at 1 A g-1 ) and applicability (a high reversible capacity of 101 mA h g-1 after 50 cycles when assembled with NCM622 into a full cell). These results may provide new insights for other electrodes with excellent rate performance and long-cycle stability.
Collapse
Affiliation(s)
- Min Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Junliang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yuanyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
13
|
Jiang M, Ma Y, Chen J, Jiang W, Yang J. Regulating the carbon distribution of anode materials in lithium-ion batteries. NANOSCALE 2021; 13:3937-3947. [PMID: 33595574 DOI: 10.1039/d0nr09209f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The exploration of electrode materials is considered to be a crucial process affecting the development of lithium-ion batteries. However, the large-scale commercial application of the great mass of anode materials has been hampered by the challenges with conductivity and volume change. These problems can be solved by the combination of a carbon-matrix with anode materials, which has proven to be an effective strategy. This review aims to outline recent advances in carbon-matrix composite anodes based on different dimensions (0D, 1D, 2D, 3D and atomic scale) and functions, with the emphasis on the regulation of carbon distribution of composite anodes. Besides, the matrix forms and carbon sources have also been summarized. This review will provide some light on the future carbon-matrix electrode design trends for LIBs.
Collapse
Affiliation(s)
- Miaomiao Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Yuanyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Junliang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Wan Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China. and Institute of Functional Materials, Donghua University, Shanghai 201620, China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China. and Institute of Functional Materials, Donghua University, Shanghai 201620, China
| |
Collapse
|
14
|
Electrochemical performance of Silsesquioxane-GO loaded with alkoxy substituted ammonium-based ionic liquid and POAP for supercapacitor. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136663] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|