1
|
In Situ Synthesis of a Bi 2Te 3-Nanosheet/Reduced-Graphene-Oxide Nanocomposite for Non-Enzymatic Electrochemical Dopamine Sensing. NANOMATERIALS 2022; 12:nano12122009. [PMID: 35745351 PMCID: PMC9228124 DOI: 10.3390/nano12122009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 12/02/2022]
Abstract
Dopamine is a neurotransmitter that helps cells to transmit pulsed chemicals. Therefore, dopamine detection is crucial from the viewpoint of human health. Dopamine determination is typically achieved via chromatography, fluorescence, electrochemiluminescence, colorimetry, and enzyme-linked methods. However, most of these methods employ specific biological enzymes or involve complex detection processes. Therefore, non-enzymatic electrochemical sensors are attracting attention owing to their high sensitivity, speed, and simplicity. In this study, a simple one-step fabrication of a Bi2Te3-nanosheet/reduced-graphene-oxide (BT/rGO) nanocomposite was achieved using a hydrothermal method to modify electrodes for electrochemical dopamine detection. The combination of the BT nanosheets with the rGO surface was investigated by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and Fourier-transform infrared spectroscopy. Electrochemical impedance spectroscopy, cyclic voltammetry, and differential pulse voltammetry were performed to analyze the electrochemical-dopamine-detection characteristics of the BT/rGO nanocomposite. The BT/rGO-modified electrode exhibited higher catalytic activity for electrocatalytic oxidation of 100 µM dopamine (94.91 µA, 0.24 V) than that of the BT-modified (4.55 µA, 0.26 V), rGO-modified (13.24 µA, 0.23 V), and bare glassy carbon electrode (2.86 µA, 0.35 V); this was attributed to the synergistic effect of the electron transfer promoted by the highly conductive rGO and the large specific surface area/high charge-carrier mobility of the two-dimensional BT nanosheets. The BT/rGO-modified electrode showed a detection limit of 0.06 µM for dopamine in a linear range of 10–1000 µM. Additionally, it exhibited satisfactory reproducibility, stability, selectivity, and acceptable recovery in real samples.
Collapse
|
2
|
Sun Y, Zhang C, Rong H, Wu L, Lian B, Wang Y, Chen Y, Tu Y, Waite TD. Electrochemical Ni-EDTA degradation and Ni removal from electroless plating wastewaters using an innovative Ni-doped PbO 2 anode: Optimization and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127655. [PMID: 34773795 DOI: 10.1016/j.jhazmat.2021.127655] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
In this work, a novel Ni-doped PbO2 anode (Ni-PbO2) was prepared via a co-electrodeposition method and used to remove Ni-ethylenediaminetetraacetic acid (Ni-EDTA) from solutions typical of electroless nickel plating wastewater. Compared with a pure PbO2 electrode, Ni doping increased the oxygen evolution potential as well as the reactive surface area and reactive site concentration and reduced the electron transfer resistance thereby resulting in superior Ni-EDTA degradation performance. The 1% Ni-doped PbO2 electrode exhibited the best electrochemical oxidation activity with a Ni-EDTA removal efficiency of 96.5 ± 1.2%, a Ni removal efficiency of 52.1 ± 1.4% and an energy consumption of 2.6 kWh m-3. Further investigations revealed that 1% Ni doping enhanced both direct oxidation and hydroxyl radical mediated oxidation processes involved in Ni-EDTA degradation. A mechanism for Ni-EDTA degradation is proposed based on the identified products. The free nickel ion concentration initially increased as a result of the degradation of Ni-EDTA complexes and subsequently decreased as a consequence of nickel electrodeposition on the cathode surface. Further characterization of the cathode deposits by X-ray diffraction and X-ray photoelectron spectra indicated that the deposition products were a mixture of Ni0, NiO and Ni(OH)2 with elemental Ni accounting for roughly 80% of the deposited nickel. Results of this study pave the way for the application of anodic oxidation processes for efficient degradation of Ni-containing complexes and recovery of Ni from nickel-containing wastewaters.
Collapse
Affiliation(s)
- Yuyang Sun
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Changyong Zhang
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Hongyan Rong
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Lei Wu
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia; UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, PR China.
| | - Boyue Lian
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Yuan Wang
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia; UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, PR China.
| | - Yong Chen
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing, Jiangsu 210036, PR China.
| | - Yong Tu
- Jiangsu Provincial Academy of Environmental Sciences Environmental Technology Co., Ltd., Nanjing, Jiangsu 210036, PR China.
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia; UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, PR China.
| |
Collapse
|
3
|
Ratnayake SP, Ren J, Colusso E, Guglielmi M, Martucci A, Della Gaspera E. SILAR Deposition of Metal Oxide Nanostructured Films. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101666. [PMID: 34309208 DOI: 10.1002/smll.202101666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Methods for the fabrication of thin films with well controlled structure and properties are of great importance for the development of functional devices for a large range of applications. SILAR, the acronym for Successive Ionic Layer Adsorption and Reaction, is an evolution and combination of two other deposition methods, the Atomic Layer Deposition and Chemical Bath Deposition. Due to a relative simplicity and low cost, this method has gained increasing interest in the scientific community. There are, however, several aspects related to the influence of the many parameters involved, which deserve further deepening. In this review article, the basis of the method, its application to the fabrication of thin films, the importance of experimental parameters, and some recent advances in the application of oxide films are reviewed. At first the fundamental theoretical bases and experimental concepts of SILAR are discussed. Then, the fabrication of chalcogenides and metal oxides is reviewed, with special emphasis to metal oxides, trying to extract general information on the effect of experimental parameters on structural, morphological and functional properties. Finally, recent advances in the application of oxide films prepared by SILAR are described, focusing on supercapacitors, transparent electrodes, solar cells, and photoelectrochemical devices.
Collapse
Affiliation(s)
| | - Jiawen Ren
- RMIT University, School of Science, Melbourne, VIC, 3001, Australia
| | - Elena Colusso
- Università di Padova and INSTM, Dipartimento di Ingegneria Industriale, Via Marzolo 9, Padova, 35131, Italy
| | - Massimo Guglielmi
- Università di Padova and INSTM, Dipartimento di Ingegneria Industriale, Via Marzolo 9, Padova, 35131, Italy
| | - Alessandro Martucci
- Università di Padova and INSTM, Dipartimento di Ingegneria Industriale, Via Marzolo 9, Padova, 35131, Italy
| | | |
Collapse
|
4
|
Structural and electrochemical properties of undoped and In3+-doped multi-phase zinc- antimony oxide for a high-performance pseudocapacitor. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Rajaji U, Chinnapaiyan S, Chen SM, Mani G, Alothman AA, Alshgari RA. Bismuth telluride decorated on graphitic carbon nitrides based binary nanosheets: Its application in electrochemical determination of salbutamol (feed additive) in meat samples. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125265. [PMID: 33588330 DOI: 10.1016/j.jhazmat.2021.125265] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
The design and fabrication of effective electrochemical sensor for ultrasensitive detection of feed additive and multidrug are highly significant in food analysis. In this work, we explored to develop the possibility for rapid detection of feed additive drug using bismuth telluride (Bi2Te3) decorated graphitic carbon nitrides (GCN) nanostructures as a modified electrode for electrochemical sensing. Herein, the modified electrode was focused on the development of electrocatalytic performances for the determination of salbutamol in food products. The electrochemical sensors are developed by bismuth telluride sheets interconnected with graphitic carbon nitrides sheets (Bi2Te3/GCN) on to a screen-printed carbon electrode. The binary nanosheets of Bi2Te3/GCN exhibited an enhanced electrocatalytic ability towards salbutamol detection owing to their selective adsorption, by the combination of electrostatic interaction of binary nanosheets and the formation of charge assisted interactions between salbutamol and Bi2Te3/GCN surfaces. A nanomolar limit of detection (1.36 nM) was calculated in 0.05 M phosphate buffer (PB) supporting electrolyte (pH 7.0) using differential pulse voltammetry. The linear dynamic ranges with respect to salbutamol concentration were 0.01-892.5 μM, and the sensitivity of the sensor was 36.277 μA μM-1 cm-2. The sensor stability and reproducibility performances were observed. However, the obtained results are highly satisfactory which suggest the application of binary nanosheets in real-time food analysis.
Collapse
Affiliation(s)
- Umamaheswari Rajaji
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Sathishkumar Chinnapaiyan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| | - G Mani
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Asma A Alothman
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Razan A Alshgari
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|