1
|
Qiu L, Wu Z, Liu Y, Qin Z, Liu Y, Zhang J, Deng Y, Hu W. Mn Doping at High-Activity Octahedral Vacancies of γ-Fe 2O 3 for Oxygen Reduction Reaction Electrocatalysis in Metal-Air Batteries. Angew Chem Int Ed Engl 2025; 64:e202421918. [PMID: 39628092 DOI: 10.1002/anie.202421918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Indexed: 12/17/2024]
Abstract
γ-Fe2O3 with the intrinsic cation vacancies is an ideal substrate for heteroatom doping into the highly active octahedral sites in spinel oxide catalysts. However, it is still a challenge to confirm the vacancy location of γ-Fe2O3 through experiments and obtain enhanced catalytic performance by preferential occupation of octahedral sites for heteroatom doping. Here, a Mn-doped γ-Fe2O3 incorporated with carbon nanotubes catalyst was developed to successfully achieve preferential doping into highly active octahedral sites by employing γ-Fe2O3 as the precursor. Further, the vacancy in γ-Fe2O3 was only located on octahedral sites rather than tetrahedral ones, which was first proved by direct experimental evidence through the clarification doping sites of Mn. Notably, the catalyst shows outstanding activity towards oxygen reduction reaction with the half-wave potential of 0.82 V and 0.64 V vs. reversible hydrogen electrode in alkaline and neutral electrolytes, respectively, as well as the maximum power density of 179 mWcm-2 and 403 mWcm-2 for Mg-air batteries and Al-air batteries, respectively. It could be attributed to the synergistic effect of the doping Mn on octahedral sites and the substrate γ-Fe2O3 along with the modification of the adsorption/desorption properties for oxygen-containing intermediates as well as the optimization of the reaction energy barriers.
Collapse
Affiliation(s)
- Liuzhe Qiu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China.Institution
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhong Wu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Yingjie Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhenbo Qin
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Yichun Liu
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Jinfeng Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Yida Deng
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China.Institution
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
2
|
Tian Y, Han Y, Wang X, Ma Z, Sun G, Li Y. A lignin-derived N-doped carbon-supported iron-based nanocomposite as high-efficiency oxygen reduction reaction electrocatalyst. Int J Biol Macromol 2024; 257:128317. [PMID: 38000613 DOI: 10.1016/j.ijbiomac.2023.128317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/12/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
Fuel cells are a promising renewable energy technology that depend heavily on noble metal Pt-based catalysts, particularly for the oxygen reduction reaction (ORR). The discovery of new, efficient non-precious metal ORR catalysts is critical for the continued development of cost-effective, high-performance fuel cells. The synthesized carbon material showed excellent electrocatalytic activity for the ORR, with half-wave potential (E1/2) and limiting current density (JL) of 0.88 V and 5.10 mA·cm-2 in alkaline electrolyte, respectively. The material has a Tafel slope of (65 mV dec-1), which is close to commercial Pt/C catalysts (60 mV dec-1). Moreover, the prepared materials exhibited excellent performance when assembled as cathodes for zinc-air batteries. The power density reached 110.02 mW cm-2 and the theoretical specific capacity was 801.21 mAh g-1, which was higher than that of the Pt/C catalyst (751.19 mAh g-1). In this study, with the assistance of Mg5(CO3)4(OH)2·4H2O, we introduce an innovative approach to synthesize advanced carbon materials, achieving precise control over the material's structure and properties. This research bridges a crucial gap in material science, with potential applications in renewable energy technologies, particularly in enhancing catalysts for fuel cells.
Collapse
Affiliation(s)
- Yuan Tian
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Ying Han
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Xing Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Zihao Ma
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Guangwei Sun
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yao Li
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
3
|
Islam S, Nayem SMA, Anjum A, Shaheen Shah S, Ahammad AJS, Aziz MA. A Mechanistic Overview of the Current Status and Future Challenges in Air Cathode for Aluminum Air Batteries. CHEM REC 2024; 24:e202300017. [PMID: 37010435 DOI: 10.1002/tcr.202300017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/16/2023] [Indexed: 04/04/2023]
Abstract
Aluminum air batteries (AABs) are a desirable option for portable electronic devices and electric vehicles (EVs) due to their high theoretical energy density (8100 Wh K-1 ), low cost, and high safety compared to state-of-the-art lithium-ion batteries (LIBs). However, numerous unresolved technological and scientific issues are preventing AABs from expanding further. One of the key issues is the catalytic reaction kinetics of the air cathode as the fuel (oxygen) for AAB is reduced there. Additionally, the performance and price of an AAB are directly influenced by an air electrode integrated with an oxygen electrocatalyst, which is thought to be the most crucial element. In this study, we covered the oxygen chemistry of the air cathode as well as a brief discussion of the mechanistic insights of active catalysts and how they catalyze and enhance oxygen chemistry reactions. There is also extensive discussion of research into electrocatalytic materials that outperform Pt/C such as nonprecious metal catalysts, metal oxide, perovskites, metal-organic framework, carbonaceous materials, and their composites. Finally, we provide an overview of the present state, and possible future direction for air cathodes in AABs.
Collapse
Affiliation(s)
- Santa Islam
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - S M Abu Nayem
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Ahtisham Anjum
- Physics Department, King Fahd University of Petroleum & Minerals, KFUPM, Box 5047, Dhahran, 31261, Saudi Arabia
| | - Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520, Japan
| | - A J Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
- K.A.CARE Energy Research & Innovation Center, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
4
|
Wang T, Feng J, Liu Q, Han X, Wu D. Facile Synthesis of Amino Acids-derived Fe/N-codoped Reduced Graphene Oxide for Enhanced ORR Electrocatalyst. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
5
|
Li H, Chen L, Li X, Sun D, Zhang H. Recent Progress on Asymmetric Carbon- and Silica-Based Nanomaterials: From Synthetic Strategies to Their Applications. NANO-MICRO LETTERS 2022; 14:45. [PMID: 35038075 PMCID: PMC8764017 DOI: 10.1007/s40820-021-00789-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/09/2021] [Indexed: 05/15/2023]
Abstract
HIGHLIGHTS The synthetic strategies and fundamental mechanisms of various asymmetric carbon- and silica-based nanomaterials were systematically summarized. The advantages of asymmetric structure on their related applications were clarified by some representative applications of asymmetric carbon- and silica-based nanomaterials. The future development prospects and challenges of asymmetric carbon- and silica-based nanomaterials were proposed. ABSTRACT Carbon- and silica-based nanomaterials possess a set of merits including large surface area, good structural stability, diversified morphology, adjustable structure, and biocompatibility. These outstanding features make them widely applied in different fields. However, limited by the surface free energy effect, the current studies mainly focus on the symmetric structures, such as nanospheres, nanoflowers, nanowires, nanosheets, and core–shell structured composites. By comparison, the asymmetric structure with ingenious adjustability not only exhibits a larger effective surface area accompanied with more active sites, but also enables each component to work independently or corporately to harness their own merits, thus showing the unusual performances in some specific applications. The current review mainly focuses on the recent progress of design principles and synthesis methods of asymmetric carbon- and silica-based nanomaterials, and their applications in energy storage, catalysis, and biomedicine. Particularly, we provide some deep insights into their unique advantages in related fields from the perspective of materials’ structure–performance relationship. Furthermore, the challenges and development prospects on the synthesis and applications of asymmetric carbon- and silica-based nanomaterials are also presented and highlighted. [Image: see text]
Collapse
Affiliation(s)
- Haitao Li
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Liang Chen
- Department of Chemistry, Laboratory of Advanced Nanomaterials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Nanomaterials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Nanomaterials (2011-iChEM), Fudan University, Shanghai, 200433, People's Republic of China
| | - Xiaomin Li
- Department of Chemistry, Laboratory of Advanced Nanomaterials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Nanomaterials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Nanomaterials (2011-iChEM), Fudan University, Shanghai, 200433, People's Republic of China
| | - Daoguang Sun
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Haijiao Zhang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
6
|
Li Z, Ma Y, Wang Y, Liu N, Zhang Y, Zhang G. Formamide-derived "glue" for the hundred-gram scale synthesis of atomically dispersed iron-nitrogen-carbon electrocatalysts. NANOSCALE 2021; 13:17890-17899. [PMID: 34673874 DOI: 10.1039/d1nr05209h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The distinct structure and maximum utilization of metal atoms on supported single-atom catalysts (SACs) represents a new frontier of heterogeneous catalysis, yet the low-cost mass production of high-performance SACs is still a key issue for practical applications. Herein, by coating a formamide-derived highly N-modified carbonaceous layer as a "glue" on commercially available activated carbon black (AC), a hundred-gram scale synthesis of atomically dispersed non-noble metal-nitrogen-carbon (MNC) materials was realized, including but not limited to Fe, Co, Ni, Mn, and Cu. The dispersion and coordination environments of Fe atoms on AC were initially revealed by XRD, HRTEM, and XPS, and further confirmed by HAADF-STEM and XANES analysis, presenting Fe atoms in a Fe-N4 structure. The atomically dispersed metal species, though relatively low-loading grafted on AC (typical loading of 0.16 to 0.29 at%), are mostly distributed on the electrochemically accessible surface, resulting in improved metal utilization. The FeNC@AC-3 sample exhibited highly comparable catalytic performance to 20 wt% Pt/C for the alkaline oxygen reduction reaction, and superior Al-air battery performance. Our work may inspire the synthesis of other types of SACs for broad electrocatalysis applications at kilogram or even ton scale.
Collapse
Affiliation(s)
- Zongge Li
- Al-ion Battery Research Center, Department of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, Shandong 266590, P. R. China.
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, P. R. China.
| | - Yan Ma
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, P. R. China.
| | - Yiyan Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, P. R. China.
| | - Nianxi Liu
- Al-ion Battery Research Center, Department of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, Shandong 266590, P. R. China.
| | - Ying Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, P. R. China.
| | - Guoxin Zhang
- Al-ion Battery Research Center, Department of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, Shandong 266590, P. R. China.
| |
Collapse
|
7
|
Wang Y, Cui X, Peng L, Li L, Qiao J, Huang H, Shi J. Metal-Nitrogen-Carbon Catalysts of Specifically Coordinated Configurations toward Typical Electrochemical Redox Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100997. [PMID: 34218474 DOI: 10.1002/adma.202100997] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/02/2021] [Indexed: 06/13/2023]
Abstract
Metal-nitrogen-carbon (M-N-C) material with specifically coordinated configurations is a promising alternative to costly Pt-based catalysts. In the past few years, great progress is made in the studies of M-N-C materials, including the structure modulation and local coordination environment identification via advanced synthetic strategies and characterization techniques, which boost the electrocatalytic performances and deepen the understanding of the underlying fundamentals. In this review, the most recent advances of M-N-C catalysts with specifically coordinated configurations of M-Nx (x = 1-6) are summarized as comprehensively as possible, with an emphasis on the synthetic strategy, characterization techniques, and applications in typical electrocatalytic reactions of the oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, CO2 reduction reaction, etc., along with mechanistic exploration by experiments and theoretical calculations. Furthermore, the challenges and potential perspectives for the future development of M-N-C catalysts are discussed.
Collapse
Affiliation(s)
- Yongxia Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai, 201620, China
| | - Xiangzhi Cui
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Luwei Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai, 201620, China
| | - Lulu Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai, 201620, China
| | - Jinli Qiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai, 201620, China
- Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Road, Shanghai, 200092, China
| | - Haitao Huang
- Department of Applied Physics, Hong Kong Polytechnic University, 11 Yucai road, Kowloon, Hong Kong, 999077, China
| | - Jianlin Shi
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
| |
Collapse
|