1
|
Chen A, Wei H, Peng Z, Wang Y, Akinlabi S, Guo Z, Gao F, Duan S, He X, Jia C, Xu BB. MXene/Nitrogen-Doped Carbon Nanosheet Scaffold Electrode toward High-Performance Solid-State Zinc Ion Supercapacitor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404011. [PMID: 38864206 DOI: 10.1002/smll.202404011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Indexed: 06/13/2024]
Abstract
While MXene is widely used as an electrode material for supercapacitor, the intrinsic limitation of stacking caused by the interlayer van der Waals forces has yet to be overcome. In this work, a strategy is proposed to fabricate a composite scaffold electrode (MCN) by intercalating MXene with highly nitrogen-doped carbon nanosheets (CN). The 2D structured CN, thermally converted and pickling from Zn-hexamine (Zn-HMT), serves as a spacer that effectively prevents the stacking of MXene and contributes to a hierarchically scaffolded structure, which is conducive to ion movement; meanwhile, the high nitrogen-doping of CN tunes the electronic structure of MCN to facilitate charge transfer and providing additional pseudocapacitance. As a result, the MCN50 composite electrode achieves a high specific capacitance of 418.4 F g-1 at 1 A g-1. The assembled symmetric supercapacitor delivers a corresponding power density of 1658.9 W kg-1 and an energy density of 30.8 Wh kg-1. The all-solid-state zinc ion supercapacitor demonstrates a superior energy density of 68.4 Wh kg-1 and a power density of 403.5 W kg-1 and shows a high capacitance retention of 93% after 8000 charge-discharge cycles. This study sheds a new light on the design and development of novel MXene-based composite electrodes for high performance all-solid-state zinc ion supercapacitor.
Collapse
Affiliation(s)
- Anli Chen
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Huige Wei
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Zhuojian Peng
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yuanzhe Wang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Stephen Akinlabi
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Zhanhu Guo
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Faming Gao
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Sidi Duan
- Department of Materials Science and Engineering, University of California Los Angeles (UCLA) Los Angeles, CA, 90095, USA
| | - Ximin He
- Department of Materials Science and Engineering, University of California Los Angeles (UCLA) Los Angeles, CA, 90095, USA
| | - Chunjiang Jia
- Offshore Renewable Energy Catapult, Offshore House, Albert Street, Blyth, NE24 1LZ, UK
| | - Ben Bin Xu
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| |
Collapse
|
2
|
Escorcia-Díaz D, García-Mora S, Rendón-Castrillón L, Ramírez-Carmona M, Ocampo-López C. Advancements in Nanoparticle Deposition Techniques for Diverse Substrates: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2586. [PMID: 37764615 PMCID: PMC10537803 DOI: 10.3390/nano13182586] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/03/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Nanoparticle deposition on various substrates has gained significant attention due to the potential applications of nanoparticles in various fields. This review paper comprehensively analyzes different nanoparticle deposition techniques on ceramic, polymeric, and metallic substrates. The deposition techniques covered include electron gun evaporation, physical vapor deposition, plasma enriched chemical vapor deposition (PECVD), electrochemical deposition, chemical vapor deposition, electrophoretic deposition, laser metal deposition, and atomic layer deposition (ALD), thermophoretic deposition, supercritical deposition, spin coating, and dip coating. Additionally, the sustainability aspects of these deposition techniques are discussed, along with their potential applications in anti-icing, antibacterial power, and filtration systems. Finally, the review explores the importance of deposition purities in achieving optimal nanomaterial performance. This comprehensive review aims to provide valuable insights into state-of-the-art techniques and applications in the field of nanomaterial deposition.
Collapse
Affiliation(s)
- Daniel Escorcia-Díaz
- Nanotechnology Engineering Program, Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Chemical Engineering Faculty, Universidad Pontificia Bolivariana, Medellín 050031, Colombia; (D.E.-D.); (S.G.-M.)
| | - Sebastián García-Mora
- Nanotechnology Engineering Program, Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Chemical Engineering Faculty, Universidad Pontificia Bolivariana, Medellín 050031, Colombia; (D.E.-D.); (S.G.-M.)
| | - Leidy Rendón-Castrillón
- Chemical Engineering Program, Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Chemical Engineering Faculty, Universidad Pontificia Bolivariana, Medellín 050031, Colombia; (L.R.-C.); (M.R.-C.)
| | - Margarita Ramírez-Carmona
- Chemical Engineering Program, Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Chemical Engineering Faculty, Universidad Pontificia Bolivariana, Medellín 050031, Colombia; (L.R.-C.); (M.R.-C.)
| | - Carlos Ocampo-López
- Chemical Engineering Program, Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Chemical Engineering Faculty, Universidad Pontificia Bolivariana, Medellín 050031, Colombia; (L.R.-C.); (M.R.-C.)
| |
Collapse
|
3
|
Li W, Zhang W, Hao S, Wu H. Bimetal Metal-Organic Framework-Derived Ni-Mn@Carbon/Reduced Graphene Oxide as a Cathode for an Asymmetric Supercapacitor with High Energy Density. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12510-12519. [PMID: 37667672 DOI: 10.1021/acs.langmuir.3c01747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
As is known, metal-organic frameworks (MOFs) are a versatile class of materials in energy storage applications including supercapacitors. However, the individual kind of metal nodes connected by organic ligands to form a topological structure still limits the potential storage capacity of MOFs. Herein, a bimetal-based Ni-Mn MOF composite is configured with a one-pot hydrothermal method to derive a composite with a synergic effect to maximize the properties. Moreover, reduced graphene oxide (rGO) sheets are added as a conductive network to anchor the MOF-derived composite of Ni-Mn@C/rGO, which is expected to increase the conductivity of the materials system. The resulting composite exhibited a high specific capacitance of 1674 F g-1 at a current density of 0.3 A g-1, suggesting excellent energy storage performance. The composite was then integrated as the cathode in an asymmetrical supercapacitor with a 3D rGO aerogel anode, resulting in energy densities of 24.1 and 17.5 W h kg-1 at power densities of 88.9 and 444.4 W kg-1, respectively. Additionally, the device demonstrated remarkable long-term stability, with 90% capacitance retention after 10 000 charge-discharge cycles at 10 A g-1.
Collapse
Affiliation(s)
- Wenxuan Li
- College of Electrical Engineering, Chuzhou Polytechnic, Chuzhou 239000, China
| | - Wenlei Zhang
- College of Electrical Engineering, Chuzhou Polytechnic, Chuzhou 239000, China
| | - Shengcai Hao
- Beijing Institute of Electro-machining Co., Ltd., Beijing Key Laboratory of Electro Discharge Machining Technology, Haidian District, Beijing 100191, China
| | - Honglu Wu
- College of Electrical Engineering, Chuzhou Polytechnic, Chuzhou 239000, China
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Haidian District, Beijing 100084, China
| |
Collapse
|
4
|
Nargatti KI, Subhedar AR, Ahankari SS, Grace AN, Dufresne A. Nanocellulose-based aerogel electrodes for supercapacitors: A review. Carbohydr Polym 2022; 297:120039. [DOI: 10.1016/j.carbpol.2022.120039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/08/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022]
|
5
|
Electrochemical behavior of polydiphenylamine-2-carboxylic acid and its hybrid nanocomposites with single-walled carbon nanotubes on anodized graphite foil in lithium aprotic electrolyte. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Li B, Li Z, Pang Q. Controllable preparation of N-doped Ni3S2 nanocubes@N-doped graphene-like carbon layers for highly active electrocatalytic overall water splitting. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Wang C, Sui G, Guo D, Li J, Zhang L, Li S, Xin J, Chai DF, Guo W. Structure-designed synthesis of hollow/porous cobalt sulfide/phosphide based materials for optimizing supercapacitor storage properties and hydrogen evolution reaction. J Colloid Interface Sci 2021; 599:577-585. [PMID: 33971566 DOI: 10.1016/j.jcis.2021.04.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/15/2021] [Accepted: 04/23/2021] [Indexed: 12/21/2022]
Abstract
Cobalt-based transition metal phosphides/sulfides have been viewed as promising candidates for supercapacitor (SCs) and hydrogen evolution reaction (HER) featured with their intrinsic merits. Nevertheless, the sluggish reaction kinetics and drastic volume expansion upon electrochemical process hinder their commercial application. In this work, the hollow/porous cobalt sulfide/phosphide based nanocuboids (C-CoP4 and CoS2 HNs) with superior specific surface area are achieved by employing a novel chemical etching-phosphatization/sulfuration strategy. The hollow/porous structure could offer rich active sites and shorten electrons/ions diffusion length. In virtue of their structural advantage, the obtained C-CoP4 and CoS2 HNs perform superior specific capacitance, fast charge/discharge rate and beneficial cycling stability. The advanced asymmetrical supercapacitors assembled by C-CoP4 and CoS2 HNs deliver exceptional energy density, respectively. Furthermore, when employed as hydrogen evolution reaction electrocatalysts, C-CoP4 and CoS2 HNs yield favorable electrocatalytic activity. These findings shed fundamental insight on the design of dual-functional transition metal phosphide/sulfide based materials for optimizing hydrogen evolution reaction and supercapacitor storage properties.
Collapse
Affiliation(s)
- Chao Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Guozhe Sui
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Dongxuan Guo
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China.
| | - Jinlong Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China.
| | - Li Zhang
- College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China
| | - Shaobin Li
- College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China
| | - Jianjiao Xin
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Dong-Feng Chai
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China.
| | - Wenxin Guo
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| |
Collapse
|
8
|
Zhou X, Meng T, Yi F, Shu D, Li Z, Zeng Q, Gao A, Zhu Z. Supramolecular assisted fabrication of Mn3O4 anchored nitrogen-doped reduced graphene oxide and its distinctive electrochemical activation process during supercapacitive study. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Abalyaeva V, Efimov M, Efimov O, Karpacheva G, Dremova N, Kabachkov E, Muratov D. Electrochemical synthesis of composite based on polyaniline and activated IR pyrolyzed polyacrylonitrile on graphite foil electrode for enhanced supercapacitor properties. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|