1
|
Muthu P, Rajagopal S, Saju D, Kesavan V, Dellus A, Sadhasivam L, Chandrasekaran N. Review of Transition Metal Chalcogenides and Halides as Electrode Materials for Thermal Batteries and Secondary Energy Storage Systems. ACS OMEGA 2024; 9:7357-7374. [PMID: 38405478 PMCID: PMC10882709 DOI: 10.1021/acsomega.3c08809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
Transition metal chalcogenides and halides (TMCs and TMHs) have been extensively used and reported as electrode materials in diverse primary and secondary batteries. This review summarizes the suitability of TMCs and TMHs as electrode materials focusing on thermal batteries (utilized for defense applications) and energy storage systems like mono- and multivalent rechargeable batteries. The report also identifies the specific physicochemical properties that need to be achieved for the same materials to be employed as cathode materials in thermal batteries and anode materials in monovalent rechargeable systems. For example, thermal stability of the materials plays a crucial role in delivering the performance of the thermal battery system, whereas the electrical conductivity and layered structure of similar materials play a vital role in enhancing the electrochemical performance of the mono- and multivalent rechargeable batteries. It can be summarized that nonlayered CoS2, FeS2, NiS2, and WS2 were found to be ideal as cathode materials for thermal batteries primarily due to their better thermal stability, whereas the layered structures of these materials with a coating of carbon allotrope (CNT, graphene, rGO) were found to be suitable as anode materials for monovalent alkali metal ion rechargeable batteries. On the other hand, vanadium, titanium, molybdenum, tin, and antimony based chalcogenides were found to be suitable as cathode materials for multivalent rechargeable batteries due to the high oxidation state of cathode materials which resists the stronger field produced during the interaction of di- and trivalent ions with the cathode material facilitating higher energy density with minimal structural and volume changes at a high rate of discharge.
Collapse
Affiliation(s)
- Premnath Muthu
- Electroplating
Metal Finishing Division, CSIR-Central Electrochemical
Research Institute, Karaikudi 630003, Tamil Nadu, India
| | - Sudha Rajagopal
- Electroplating
Metal Finishing Division, CSIR-Central Electrochemical
Research Institute, Karaikudi 630003, Tamil Nadu, India
| | - Devishree Saju
- Electroplating
Metal Finishing Division, CSIR-Central Electrochemical
Research Institute, Karaikudi 630003, Tamil Nadu, India
| | - Vidyashri Kesavan
- Electroplating
Metal Finishing Division, CSIR-Central Electrochemical
Research Institute, Karaikudi 630003, Tamil Nadu, India
| | - Arun Dellus
- Electroplating
Metal Finishing Division, CSIR-Central Electrochemical
Research Institute, Karaikudi 630003, Tamil Nadu, India
| | - Loganathan Sadhasivam
- Defence
Research and Development Organisation-RCI, Hyderabad 500069, Telangana, India
| | - Naveen Chandrasekaran
- Electroplating
Metal Finishing Division, CSIR-Central Electrochemical
Research Institute, Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
2
|
Chai L, Li X, Lv W, Wu G, Zhang W, Li Z. Dual Protection Strategy by Constructing MXene-Coated Cu 2Se-Cu 1.8Se Heterojunction and CMK-3 Modification for High-Performance Aluminum-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48780-48788. [PMID: 36265080 DOI: 10.1021/acsami.2c15189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The fabrication of cathode materials with ideal kinetic behavior is important to improve the electrochemical performance of aluminum-ion batteries (AIBs). Transition metal selenides have the advantages of abundant reserves and high discharge specific capacity and discharge voltage plateau, which makes them a promising material for rechargeable AIBs. It is well-known that the low structural stability and relatively poor reaction kinetics pose a considerable challenge to the development of AIBs. The cubic structure of Cu2Se-Cu1.8Se can adapt to the volume change of the active material during cycling and facilitate the intercalation and deintercalation of chloroaluminate anions in the cathode material. We created a two-fold protection mechanism for AIBs with a CMK-3 modified separator and a Cu2Se-Cu1.8Se heterojunction coated with MXene in order to better mitigate the detrimental impacts. In addition to offering numerous electronic transmission routes, MXene and CMK-3 help prevent the solubilization of active species. This novel design enables the Cu2Se-Cu1.8Se@MXene composite to have a high initial discharge capacity of 705.5 mAh g-1 at 1.0 A g-1. Even after 1500 cycles at 2.0 A g-1, the capacity is still maintained at 225.1 mAh g-1. Furthermore, the reaction mechanism of AlCl4- intercalated/deintercalated into Cu2Se-Cu1.8Se heterojunction is revealed during charge/discharge. This work to construct novel cathode materials has greatly improved the electrochemical performance of AIBs.
Collapse
Affiliation(s)
- Luning Chai
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding071002, China
| | - Xiaoxiao Li
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding071002, China
| | - Wenrong Lv
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding071002, China
| | - Gaohong Wu
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding071002, China
| | - Wenming Zhang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding071002, China
| | - Zhanyu Li
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding071002, China
| |
Collapse
|
3
|
Du Y, Zhang B, Kang R, Zhou W, Zhang W, Jin H, Wan J, Zhang JX, Chen G. Boron-doping-induced Defect Engineering Enables High-performance Graphene Cathode for Aluminum Batteries. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01474a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rechargeable aluminum batteries (RABs) have received significant interest due to the low cost, high volumetric capacity, and low flammability of aluminum. However, the paucity of reliable cathode materials poses substantial...
Collapse
|
4
|
Li Y, Wu F, Qian J, Zhang M, Yuan Y, Bai Y, Wu C. Metal Chalcogenides with Heterostructures for High‐Performance Rechargeable Batteries. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100012] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Yu Li
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Feng Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 P. R. China
- Collaborative Innovation Center of Electric Vehicles in Beijing Beijing 100081 P. R. China
| | - Ji Qian
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Minghao Zhang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Yanxian Yuan
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Ying Bai
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Chuan Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 P. R. China
- Collaborative Innovation Center of Electric Vehicles in Beijing Beijing 100081 P. R. China
| |
Collapse
|
5
|
Tu J, Song WL, Lei H, Yu Z, Chen LL, Wang M, Jiao S. Nonaqueous Rechargeable Aluminum Batteries: Progresses, Challenges, and Perspectives. Chem Rev 2021; 121:4903-4961. [PMID: 33728899 DOI: 10.1021/acs.chemrev.0c01257] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
For significantly increasing the energy densities to satisfy the growing demands, new battery materials and electrochemical chemistry beyond conventional rocking-chair based Li-ion batteries should be developed urgently. Rechargeable aluminum batteries (RABs) with the features of low cost, high safety, easy fabrication, environmental friendliness, and long cycling life have gained increasing attention. Although there are pronounced advantages of utilizing earth-abundant Al metals as negative electrodes for high energy density, such RAB technologies are still in the preliminary stage and considerable efforts will be made to further promote the fundamental and practical issues. For providing a full scope in this review, we summarize the development history of Al batteries and analyze the thermodynamics and electrode kinetics of nonaqueous RABs. The progresses on the cutting-edge of the nonaqueous RABs as well as the advanced characterizations and simulation technologies for understanding the mechanism are discussed. Furthermore, major challenges of the critical battery components and the corresponding feasible strategies toward addressing these issues are proposed, aiming to guide for promoting electrochemical performance (high voltage, high capacity, large rate capability, and long cycling life) and safety of RABs. Finally, the perspectives for the possible future efforts in this field are analyzed to thrust the progresses of the state-of-the-art RABs, with expectation of bridging the gap between laboratory exploration and practical applications.
Collapse
Affiliation(s)
- Jiguo Tu
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Wei-Li Song
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Haiping Lei
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, P.R. China.,School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Zhijing Yu
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Li-Li Chen
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Mingyong Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Shuqiang Jiao
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, P.R. China.,School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| |
Collapse
|