1
|
Zhao P, Liu Q, Yang X, Zhu J, Yang S, Chen L, Zhang Q. High-performance flexible asymmetric supercapacitor based on hierarchical MnO 2/PPy nanocomposites covered MnOOH nanowire arrays cathode and 3D network-like Fe 2O 3/PPy hybrid nanosheets anode. J Colloid Interface Sci 2024; 662:322-332. [PMID: 38354559 DOI: 10.1016/j.jcis.2024.02.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/16/2024]
Abstract
The configuration of asymmetric supercapacitors (ASCs) has proven to be an effective approach to increase the energy storage properties due to the expanded working voltage resulting from the well-separated potential windows of the cathode and anode. However, carbonaceous anode materials generally suffer from relatively low capacitance, which restricts the enhancement of the energy storage performance of the full device in a traditional asymmetrical design. Herein, a rational design of all-pseudocapacitive ASCs (APASCs) using pseudocapacitive materials with a novel hierarchical nanostructure on both electrodes was developed to optimize the electrochemical properties for high-performance ASC devices. The assembled APASC employed the MnO2/PPy nanocomposites covered MnOOH nanowire arrays with core-shell hierarchical architecture as the cathode and Fe2O3/PPy hybrid nanosheets with 3D porous network-like structure as the anode. Owing to the coordinated pseudocapacitive properties and unique hierarchical nanostructures, this assembled APASC exhibited an exceptional volumetric capacitance of 4.92F cm-3 in a stable voltage window of 2 V, a maximum volumetric energy density of 2.66 mWh cm-3 at 19.72 mW cm-3, and excellent cyclic stability over 10,000 cycles (90.6 % capacitance retention), as well as remarkable flexibility and mechanical stability, providing insights for the design of flexible energy storage systems with enhanced performance.
Collapse
Affiliation(s)
- Peng Zhao
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, PR China.
| | - Qiancheng Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, PR China
| | - Xulin Yang
- School of Mechanical Engineering, Chengdu University, Chengdu, Sichuan 610106, PR China; Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, PR China
| | - Jie Zhu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Sudong Yang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Lin Chen
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Qian Zhang
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, PR China.
| |
Collapse
|
2
|
Liu Y, Li Y, Liu Z, Feng T, Lin H, Li G, Wang K. Uniform P-Doped MnMoO 4 Nanosheets for Enhanced Asymmetric Supercapacitors Performance. Molecules 2024; 29:1988. [PMID: 38731479 PMCID: PMC11085725 DOI: 10.3390/molecules29091988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Manganese molybdate has garnered considerable interest in supercapacitor research owing to its outstanding electrochemical properties and nanostructural stability but still suffers from the common problems of transition metal oxides not being able to reach the theoretical specific capacitance and lower electrical conductivity. Doping phosphorus elements is an effective approach to further enhance the electrochemical characteristics of transition metal oxides. In this study, MnMoO4·H2O nanosheets were synthesized on nickel foam via a hydrothermal route, and the MnMoO4·H2O nanosheet structure was successfully doped with a phosphorus element using a gas-solid reaction method. Phosphorus element doping forms phosphorus-metal bonds and oxygen vacancies, thereby increasing the charge storage and conductivity of the electrode material. The specific capacitance value is as high as 2.112 F cm-2 (1760 F g-1) at 1 mA cm-2, which is 3.2 times higher than that of the MnMoO4·H2O electrode (0.657 F cm-2). The P-MnMoO4//AC ASC device provides a high energy density of 41.9 Wh kg-1 at 666.8 W kg-1, with an 84.5% capacity retention after 10,000 charge/discharge cycles. The outstanding performance suggests that P-MnMoO4 holds promise as an electrode material for supercapacitors.
Collapse
Affiliation(s)
- Yu Liu
- Institute of Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (Y.L.); (Z.L.); (T.F.); (G.L.)
| | - Yan Li
- Key Laboratory of Light Field Manipulation and System Integration Applications in Fujian Province, School of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China;
| | - Zhuohao Liu
- Institute of Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (Y.L.); (Z.L.); (T.F.); (G.L.)
| | - Tao Feng
- Institute of Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (Y.L.); (Z.L.); (T.F.); (G.L.)
| | - Huichuan Lin
- Key Laboratory of Light Field Manipulation and System Integration Applications in Fujian Province, School of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China;
| | - Gang Li
- Institute of Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (Y.L.); (Z.L.); (T.F.); (G.L.)
| | - Kaiying Wang
- Department of Microsystems, University of South-Eastern Norway, 3184 Horten, Norway
| |
Collapse
|
3
|
Zhang S, Li L, Liu Y, Li Q. Nanocellulose/carbon nanotube/manganese dioxide composite electrodes with high mass loadings for flexible supercapacitors. Carbohydr Polym 2024; 326:121661. [PMID: 38142085 DOI: 10.1016/j.carbpol.2023.121661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/31/2023] [Accepted: 12/01/2023] [Indexed: 12/25/2023]
Abstract
The increasing commercialization of flexible electronic products has sparked a rising interest in flexible wearable energy storage devices. Supercapacitors are positioned as one of the systems with the most potential due to their distinctive advantages: high power density, rapid charge and discharge rates, and long cycle life. However, electrode materials face challenges in providing excellent mechanical strength while ensuring sufficient energy density. This study presents a method for constructing a flexible composite electrode material with high capacitance and mechanical performance by electrochemically depositing high-quality manganese dioxide (MnO2) onto the surface of a nanocellulose (CNF) and carbon nanotube (CNT) conductive film. In this electrode material, the CNF/CNT composite film serves as a flexible conductive substrate, offering excellent mechanical properties (modulus of 3.3 GPa), conductivity (55 S/cm), and numerous active sites. Furthermore, at the interface between MnO2 and the CNF/CNT substrate, C-O-Mn bonds are formed, promoting a tight connection between the composite materials. The assembled symmetric flexible supercapacitor (FSC) demonstrates impressive performance, with an areal specific capacitance of 934 mF/cm2, an energy density of 43.10 Wh/kg, a power density of 166.67 W/kg and a long cycle life (85 % Capacitance retention after 10,000 cycles), suggesting that they hold promise for FSC applications.
Collapse
Affiliation(s)
- Sufeng Zhang
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xian 710021, China.
| | - Lei Li
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xian 710021, China
| | - Yali Liu
- Xinjiang Key Laboratory of Trace Chemicals Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Qinglu Li
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xian 710021, China
| |
Collapse
|
4
|
Islam MR, Afroj S, Yin J, Novoselov KS, Chen J, Karim N. Advances in Printed Electronic Textiles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304140. [PMID: 38009793 PMCID: PMC10853734 DOI: 10.1002/advs.202304140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/11/2023] [Indexed: 11/29/2023]
Abstract
Electronic textiles (e-textiles) have emerged as a revolutionary solution for personalized healthcare, enabling the continuous collection and communication of diverse physiological parameters when seamlessly integrated with the human body. Among various methods employed to create wearable e-textiles, printing offers unparalleled flexibility and comfort, seamlessly integrating wearables into garments. This has spurred growing research interest in printed e-textiles, due to their vast design versatility, material options, fabrication techniques, and wide-ranging applications. Here, a comprehensive overview of the crucial considerations in fabricating printed e-textiles is provided, encompassing the selection of conductive materials and substrates, as well as the essential pre- and post-treatments involved. Furthermore, the diverse printing techniques and the specific requirements are discussed, highlighting the advantages and limitations of each method. Additionally, the multitude of wearable applications made possible by printed e-textiles is explored, such as their integration as various sensors, supercapacitors, and heated garments. Finally, a forward-looking perspective is provided, discussing future prospects and emerging trends in the realm of printed wearable e-textiles. As advancements in materials science, printing technologies, and design innovation continue to unfold, the transformative potential of printed e-textiles in healthcare and beyond is poised to revolutionize the way wearable technology interacts and benefits.
Collapse
Affiliation(s)
- Md Rashedul Islam
- Centre for Print Research (CFPR)University of the West of EnglandFrenchay CampusBristolBS16 1QYUK
| | - Shaila Afroj
- Centre for Print Research (CFPR)University of the West of EnglandFrenchay CampusBristolBS16 1QYUK
| | - Junyi Yin
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
| | - Kostya S. Novoselov
- Institute for Functional Intelligent MaterialsDepartment of Materials Science and EngineeringNational University of SingaporeSingapore117575Singapore
| | - Jun Chen
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
| | - Nazmul Karim
- Centre for Print Research (CFPR)University of the West of EnglandFrenchay CampusBristolBS16 1QYUK
- Nottingham School of Art and DesignNottingham Trent UniversityShakespeare StreetNottinghamNG1 4GGUK
| |
Collapse
|
5
|
Yan Z, Luo S, Li Q, Wu ZS, Liu SF. Recent Advances in Flexible Wearable Supercapacitors: Properties, Fabrication, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302172. [PMID: 37537662 PMCID: PMC10885655 DOI: 10.1002/advs.202302172] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/29/2023] [Indexed: 08/05/2023]
Abstract
A supercapacitor is a potential electrochemical energy storage device with high-power density (PD) for driving flexible, smart, electronic devices. In particular, flexible supercapacitors (FSCs) have reliable mechanical and electrochemical properties and have become an important part of wearable, smart, electronic devices. It is noteworthy that the flexible electrode, electrolyte, separator and current collector all play key roles in overall FSCs. In this review, the unique mechanical properties, structural designs and fabrication methods of each flexible component are systematically classified, summarized and discussed based on the recent progress of FSCs. Further, the practical applications of FSCs are delineated, and the opportunities and challenges of FSCs in wearable technologies are proposed. The development of high-performance FSCs will greatly promote electricity storage toward more practical and widely varying fields. However, with the development of portable equipment, simple FSCs cannot satisfy the needs of integrated and intelligent flexible wearable devices for long durations. It is anticipated that the combining an FSC and a flexible power source such as flexible solar cells is an effective strategy to solve this problem. This review also includes some discussions of flexible self-powered devices.
Collapse
Affiliation(s)
- Zhe Yan
- School of Materials Science and Engineering, Xi'an Shiyou University, Xi'an, Shaanxi, 710065, P. R. China
| | - Sheji Luo
- School of Materials Science and Engineering, Xi'an Shiyou University, Xi'an, Shaanxi, 710065, P. R. China
| | - Qi Li
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Zhong-Shuai Wu
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Shengzhong Frank Liu
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
6
|
Li Z, Li M, Wang X, Fu N, Yang Z. A crosslinked network polypyrrole coated cobalt doped Fe 2O 3@carbon cloth flexible anode material for quasi-solid asymmetric supercapacitors. Dalton Trans 2023; 52:13169-13180. [PMID: 37656423 DOI: 10.1039/d3dt01821k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Iron(III) oxide (Fe2O3) exhibits a substantial theoretical specific capacitance and a broad operational voltage window, making it a prospective anode material. The crystal structure of Fe2O3 was altered through cobalt doping, and its electronic conductivity was improved by supporting it with carbon cloth (Co-Fe2O3@CC). Subsequently, a crosslinked network of polypyrrole (PPy) was synthesized onto Co-Fe2O3@CC via an ice-water bath, resulting in the formation of PPy/Co-Fe2O3@CC. This PPy nano-crosslinked network not only established three-dimensional electron transport pathways on the Fe2O3 surface but also amplified the composite material's specific surface area to 45.229 m2 g-1, thereby promoting its electrochemical performance. At a current density of 2 mA cm-2, PPy/Co-Fe2O3@CC displayed an area specific capacitance of 704 mF cm-2, a value 2.2 times higher than that of Co-Fe2O3@CC. The assembled PPy/Co-Fe2O3@CC//Ni-MnO2@CC asymmetric supercapacitor demonstrated an energy density of 1.41 mW h cm-3 at a power density of 54 mW cm-3, making the synthesized electrode material a promising candidate for flexible supercapacitors.
Collapse
Affiliation(s)
- Zhiwei Li
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 200092, P. R. China.
| | - Minglong Li
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 200092, P. R. China.
| | - Xiaodong Wang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology & School of Physics Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Ning Fu
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, P. R. China.
| | - Zhenglong Yang
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 200092, P. R. China.
| |
Collapse
|
7
|
Mohammadi SZ, Tajik S, Mousazadeh F, Baghadam-Narouei E, Garkani Nejad F. ZnO Hollow Quasi-Spheres Modified Screen-Printed Graphite Electrode for Determination of Carmoisine. MICROMACHINES 2023; 14:1433. [PMID: 37512744 PMCID: PMC10385384 DOI: 10.3390/mi14071433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023]
Abstract
Food colorants are important in food selection because they improve the gastronomic appeal of foods by improving their aesthetic appeal. However, after prolonged use, many colorants turn toxic and cause medical problems. A synthetic azo-class dye called carmoisine gives meals a red color. Therefore, the carmoisine determination in food samples is of great importance from the human health control. The current work was developed to synthesis ZnO hollow quasi-spheres (ZnO HQSs) to prepare a new electrochemical carmoisine sensor that is sensitive. Field emission-scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) have been used to analyze the properties of prepared ZnO HQSs. A screen-printed graphite electrode (SPGE) surface was modified with ZnO HQSs to prepare the ZnO HQSs-SPGE sensor. For carmoisine detection, the ZnO HQSs-SPGE demonstrated an appropriate response and notable electrocatalytic activities. The carmoisine electro-oxidation signal was significantly stronger on the ZnO HQSs-SPGE surface compared to the bare SPGE. Cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CHA), and differential pulse voltammetry (DPV) have been utilized to investigate the suggested protocol. The DPV results revealed an extensive linear association between variable carmoisine concentrations and peak current that ranged from 0.08 to 190.0 µM, with a limit of detection (LOD) as narrow as 0.02 µM. The ZnO HQSs-SPGE's ability to detect carmoisine in real samples proved the sensor's practical application.
Collapse
Affiliation(s)
- Sayed Zia Mohammadi
- Department of Chemistry, Payame Noor University, Tehran P.O. Box 19395-3697, Iran
| | - Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman P.O. Box 76169-13555, Iran
| | - Farideh Mousazadeh
- Department of Chemistry, Payame Noor University, Tehran P.O. Box 19395-3697, Iran
| | | | - Fariba Garkani Nejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman P.O. Box 76169-13555, Iran
| |
Collapse
|
8
|
Fan K, Chen Q, Zhao J, Liu Y. Preparation of MnO 2-Carbon Materials and Their Applications in Photocatalytic Water Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:541. [PMID: 36770501 PMCID: PMC9921467 DOI: 10.3390/nano13030541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Water pollution is one of the most important problems in the field of environmental protection in the whole world, and organic pollution is a critical one for wastewater pollution problems. How to solve the problem effectively has triggered a common concern in the area of environmental protection nowadays. Around this problem, scientists have carried out a lot of research; due to the advantages of high efficiency, a lack of secondary pollution, and low cost, photocatalytic technology has attracted more and more attention. In the past, MnO2 was seldom used in the field of water pollution treatment due to its easy agglomeration and low catalytic activity at low temperatures. With the development of carbon materials, it was found that the composite of carbon materials and MnO2 could overcome the above defects, and the composite had good photocatalytic performance, and the research on the photocatalytic performance of MnO2-carbon materials has gradually become a research hotspot in recent years. This review covers recent progress on MnO2-carbon materials for photocatalytic water treatment. We focus on the preparation methods of MnO2 and different kinds of carbon material composites and the application of composite materials in the removal of phenolic compounds, antibiotics, organic dyes, and heavy metal ions in water. Finally, we present our perspective on the challenges and future research directions of MnO2-carbon materials in the field of environmental applications.
Collapse
Affiliation(s)
- Kun Fan
- Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Qing Chen
- Chinese Research Academy of Environment Sciences, Beijing 100012, China
- Ecological and Environmental Protection Company, China South-to-North Water Diversion Corporation Limited, Beijing 100036, China
| | - Jian Zhao
- Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Yue Liu
- Chinese Research Academy of Environment Sciences, Beijing 100012, China
| |
Collapse
|
9
|
Heteroatom Doping Strategy Enables Bi-functional Electrode with Superior Electrochemical Performance. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
MoS2 nanosheet loaded Fe2O3 @ carbon cloth flexible composite electrode material for quasi-solid asymmetric supercapacitors. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Singh P, Gupta A, Kushwaha VK, Mondal R, Singh AN, Prakash R, Mandal K. SrFeO3–δ: A Novel Fe4+↔Fe2+ Redox Mediated Pseudocapacitive Electrode in Aqueous Electrolyte. Phys Chem Chem Phys 2022; 24:11066-11078. [DOI: 10.1039/d1cp04751e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pseudocapacitor offers both high energy and high power making them suitable for grid scale electrochemical energy storage to harness the renewable energy produced through solar, wind and tides. To overcome...
Collapse
|
12
|
Liang Y, Luo X, Weng W, Hu Z, Zhang Y, Xu W, Bi Z, Zhu M. Activated Carbon Nanotube Fiber Fabric as a High-Performance Flexible Electrode for Solid-State Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28433-28441. [PMID: 34114814 DOI: 10.1021/acsami.1c02758] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Owing to their features of excellent mechanical flexibility, high conductivity, and light weight, carbon-based fiber fabrics (CBFFs) are highly attractive as flexible electrodes for flexible solid-state supercapacitors (SCs). However, the achieved areal capacitance of most CBFFs is still unsatisfactory. Carbon nanotube fiber fabric (CNTFF) is a new kind of CBFF and could provide a potential alternative to high-performance flexible electrodes. Herein, we report the activation of CNTFF using a facile thermal oxidation and acid treatment process. The activated CNTFF shows an exceptional combination of large areal capacitance (1988 mF cm-2 at 2 mA cm-2), excellent rate performance (45% capacitance reservation at 100 mA cm-2), and outstanding cycle life (only 3% capacitance decay after 10,000 cycles). The constructed solid-state SC reaches a maximum energy density of 143 μWh cm-2 at 1000 μW cm-2 and a maximum power density of 30,600 μW cm-2 at 82 μWh cm-2. Additionally, this device possesses good rate performance along with superb cycle stability and excellent mechanical flexibility under various bending conditions. Our present work therefore offers a new opportunity in developing high-performance flexible electrodes for flexible energy storage.
Collapse
Affiliation(s)
- Yunxia Liang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xiaogang Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China
| | - Wei Weng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Zexu Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yang Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Wenting Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Zejia Bi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| |
Collapse
|
13
|
Sun PP, Li YM, Zhang YH, Shi H, Shi FN. Application of a one dimensional Co-MOP wires on supercapacitors. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|