1
|
Lu X, Yadav D, He B, Zhou Y, Zhou L, Zeng Z, Ma L, Jing D. Unveiling micro- and nanoscale bubble dynamics for enhanced electrochemical water splitting. Adv Colloid Interface Sci 2025; 343:103544. [PMID: 40382849 DOI: 10.1016/j.cis.2025.103544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/31/2025] [Accepted: 05/07/2025] [Indexed: 05/20/2025]
Abstract
Bubbles generated during electrochemical and photoelectrochemical water splitting critically influence efficiency through complex factors, including chemical reactions, species transport, mass transfer at the three-phase interface, and bubble coverage. A detailed understanding of the nucleation, growth, coalescence, and detachment of micro- and nanoscale bubbles is vital for advancing water splitting technologies. Surface-attached bubbles significantly reduce the electrocatalytically active area of electrodes, leading to increased surface overpotential at a given current density. Consequently, their effective removal is pivotal for optimizing the electrolysis process. However, the intricate interplay among single bubble evolution, mass transport, bubble coverage, and overpotential remain inadequately understood. This review explores the fundamental mechanisms underpinning bubble evolution, with an emphasis on the Marangoni effect and its influence on bubble dynamics. Furthermore, recent advancements in understanding individual bubbles on micro and nano-electrodes are highlighted, offering valuable insights into scale-dependent bubble behavior. These findings enrich our knowledge of gas-liquid interfacial phenomena and underscore their industrial significance, presenting opportunities to enhance water splitting performance through optimized bubble dynamics.
Collapse
Affiliation(s)
- Xinlong Lu
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Devendra Yadav
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Baichuan He
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yu Zhou
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Liwu Zhou
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zilong Zeng
- College of Mechanical Engineering, Xi'an Shiyou University, Xi'an, Shaanxi 710065, China
| | - Lijing Ma
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Dengwei Jing
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| |
Collapse
|
2
|
Liang F, van de Krol R, Abdi FF. Assessing elevated pressure impact on photoelectrochemical water splitting via multiphysics modeling. Nat Commun 2024; 15:4944. [PMID: 38858377 PMCID: PMC11164907 DOI: 10.1038/s41467-024-49273-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024] Open
Abstract
Photoelectrochemical (PEC) water splitting is a promising approach for sustainable hydrogen production. Previous studies have focused on devices operated at atmospheric pressure, although most applications require hydrogen delivered at elevated pressure. Here, we address this critical gap by investigating the implications of operating PEC water splitting directly at elevated pressure. We evaluate the benefits and penalties associated with elevated pressure operation by developing a multiphysics model that incorporates empirical data and direct experimental observations. Our analysis reveals that the operating pressure influences bubble characteristics, product gas crossover, bubble-induced optical losses, and concentration overpotential, which are crucial for the overall device performance. We identify an optimum pressure range of 6-8 bar for minimizing losses and achieving efficient PEC water splitting. This finding provides valuable insights for the design and practical implementation of PEC water splitting devices, and the approach can be extended to other gas-producing (photo)electrochemical systems. Overall, our study demonstrates the importance of elevated pressure in PEC water splitting, enhancing the efficiency and applicability of green hydrogen generation.
Collapse
Affiliation(s)
- Feng Liang
- Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Berlin, Germany
| | - Roel van de Krol
- Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Berlin, Germany
- Technische Universität Berlin, Department of Chemistry, Straße des 17. Juni 124, Berlin, Germany
| | - Fatwa F Abdi
- Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Berlin, Germany.
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
3
|
Liu B, Wang S, Zhang G, Gong Z, Wu B, Wang T, Gong J. Tandem cells for unbiased photoelectrochemical water splitting. Chem Soc Rev 2023. [PMID: 37325843 DOI: 10.1039/d3cs00145h] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Hydrogen is an essential energy carrier which will address the challenges posed by the energy crisis and climate change. Photoelectrochemical water splitting (PEC) is an important method for producing solar-powered hydrogen. The PEC tandem configuration harnesses sunlight as the exclusive energy source to drive both the hydrogen (HER) and oxygen evolution reactions (OER), simultaneously. Therefore, PEC tandem cells have been developed and gained tremendous interest in recent decades. This review describes the current status of the development of tandem cells for unbiased photoelectrochemical water splitting. The basic principles and prerequisites for constructing PEC tandem cells are introduced first. We then review various single photoelectrodes for use in water reduction or oxidation, and highlight the current state-of-the-art discoveries. Second, a close look into recent developments of PEC tandem cells in water splitting is provided. Finally, a perspective on the key challenges and prospects for the development of tandem cells for unbiased PEC water splitting are given.
Collapse
Affiliation(s)
- Bin Liu
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, CT 06520, USA
| | - Shujie Wang
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Gong Zhang
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zichen Gong
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Bo Wu
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Tuo Wang
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Jinlong Gong
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, CT 06520, USA
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
4
|
Xu Q, Tao L, She Y, Ye X, Wang M, Nie T. Effect of Laser Spot Diameter on Oxygen Bubble Behavior in Photoelectrochemical Water Splitting. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
5
|
Nie T, Li Z, Luo X, She Y, Liang L, Xu Q, Guo L. Single bubble dynamics on a TiO2 photoelectrode surface during photoelectrochemical water splitting. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Cao Z, Zhang B, Feng Y, Xu Q, Wang Y, Guo L. Mass Transfer Mechanism During Bubble Evolution on the Surface of Photoelectrode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|