1
|
Yang R, Wang C, Li Y, Chen Z, Wei M. Construction of FeS2@C coated with reduced graphene oxide as high-performance anode for lithium-ion batteries. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
2
|
Mi Z, Hu D, Lin J, Pan H, Chen Z, Li Y, Liu Q, Zhu S. Anchoring nanoarchitectonics of 1T’-MoS2 nanoflakes on holey graphene sheets for lithium-ion batteries with outstanding high-rate performance. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Kang B, Wang Y, He X, Wu Y, Li X, Lin C, Chen Q, Zeng L, Wei M, Qian Q. Facile fabrication of WS 2 nanocrystals confined in chlorella-derived N, P co-doped bio-carbon for sodium-ion batteries with ultra-long lifespan. Dalton Trans 2021; 50:14745-14752. [PMID: 34590667 DOI: 10.1039/d1dt01582f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sodium-ion batteries (SIBs) have been regarded as a promising substitute for lithium-ion batteries but there are still formidable challenges in developing an anode material with adequate lifespan and outstanding rate performance. Transition metal dichalcogenides (TMDs) are promising anode materials for SIBs due to their high theoretical capacities. However, their severe volume expansions and low electronic conductivity impede their practical developments. In addition, the synthesis of energy storage materials from waste biomass has aroused extensive attention. Herein, we synthesize WS2 nanocrystals embedded in N and P co-doped biochar via a facile bio-sorption followed by sulphurization, employing waste chlorella as the adsorbent and bio-reactor. The WS2 nanocrystals are beneficial for storing more sodium ions and expediting the transportation of sodium ions, thus improving the capacity and reaction kinetics. Chlorella acts as a reactor and not only inhibits the stacking of WS2 nanocrystals during the synthesis process but also alleviates the mechanical pressure of composite during the charge/discharge process. As a result, the WS2/NPC-2 electrode delivers a high specific capacity (436 mA h g-1 at 0.1 A g-1) and superior rate performance of 311 mA h g-1 at 3 A g-1 for SIBs. It also exhibits excellent stability even up to 6000 cycles at 5 A g-1, which is one of the optimal long-cycle properties reported for WS2-based materials to date.
Collapse
Affiliation(s)
- Biyu Kang
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China.
| | - Yiyi Wang
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China.
| | - Xiaotong He
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China.
| | - Yaling Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, and College of Life Science, Fujian Normal University, Fuzhou 350007, Fujian, China.
| | - Xinye Li
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China.
| | - Chuyuan Lin
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China.
| | - Qinghua Chen
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China.
| | - Lingxing Zeng
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China. .,Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian 350007, China.,Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mingdeng Wei
- Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Qingrong Qian
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China. .,Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian 350007, China.,Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Zhou P, Collins G, Hens Z, Ryan KM, Geaney H, Singh S. Colloidal WSe 2 nanocrystals as anodes for lithium-ion batteries. NANOSCALE 2020; 12:22307-22316. [PMID: 33146655 DOI: 10.1039/d0nr05691j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Transition metal dichalcogenides (TMDs) are gaining increasing interest in the field of lithium ion batteries due to their unique structure. However, previous preparation methods have mainly focused on their growth from substrates or by exfoliation of the bulk materials. Considering colloidal synthesis has many advantages including precision control of morphology and crystal phases, there is significant scope for exploring this avenue for active material formation. Therefore, in this work, we explore the applicability of colloidal TMDs using WSe2 nanocrystals for Li ion battery anodes. By employing colloidal hot-injection protocol, we first synthesize 2D nanosheets in 2H and 1T' crystal phases. After detailed structural and surface characterization, we investigate the performance of these nanosheets as anode materials. We found that 2H nanosheets outperformed 1T' nanosheets exhibiting a higher specific capacity of 498 mA h g-1 with an overall capacity retention of 83.28%. Furthermore, to explore the role of morphology on battery performance, 3D interconnected nanoflowers in 2H crystal phase were also investigated as an anode material. It is worth noting that a specific capacity of 982 mA h g-1 was exhibited after 100 cycles by these nanoflowers. The anode materials were characterized prior to cycling and after 1, 25, and 100 charge/discharge cycles, by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), to track the effects of cycling on the material.
Collapse
Affiliation(s)
- Pengshang Zhou
- Physics and Chemistry of Nanostructures, Ghent University, 9000 Ghent, Belgium
| | | | | | | | | | | |
Collapse
|