1
|
Alsaedi MK, Like BD, Wieck KW, Panzer MJ. Zwitterionic Materials for Enhanced Battery Electrolytes. Chempluschem 2024; 89:e202300731. [PMID: 38252804 DOI: 10.1002/cplu.202300731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
Zwitterions (ZIs), which are molecules bearing an equal number of positive and negative charges and typically possessing large dipole moments, can play an important role in improving the characteristics of a wide variety of novel battery electrolytes. Significant Coulombic interactions among ZI charged groups and any mobile ions present can lead to several beneficial phenomena within electrolytes, such as increased salt dissociation, the formation of ordered pathways for ion transport, and enhanced mechanical robustness. In some cases, ZI additives can also boost electrochemical stability at the electrolyte/electrode interface and enable longer battery cycling. Here, a brief summary of selected key historical and recent advances in the use of ZI materials to enrich the performance of three distinct classes of battery electrolytes is presented. These include: ionic liquid-based, conventional solvent-based, and solid matrix-based (non-ceramic) electrolytes. Exploring a greater chemical diversity of ZI types and electrolyte pairings will likely lead to more discoveries that can empower next-generation battery designs in the years to come.
Collapse
Affiliation(s)
- Mossab K Alsaedi
- Department of Chemical & Biological Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Bricker D Like
- Department of Chemical & Biological Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Karl W Wieck
- Department of Chemical & Biological Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Matthew J Panzer
- Department of Chemical & Biological Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| |
Collapse
|
2
|
Alsaedi MK, Tadesse MY, Ganesan V, Panzer MJ. Zwitterionic Polymer Ionogel Electrolytes Supported by Coulombic Cross-Links: Impacts of Alkali Metal Cation Identity. J Phys Chem B 2024; 128:3273-3281. [PMID: 38532249 DOI: 10.1021/acs.jpcb.3c08144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Zwitterionic (ZI) polymers enable the formation of noncovalent cross-links within ionic liquid electrolytes (ILEs) to create nonflammable, mechanically robust, and highly conductive ionogel electrolytes. In this study, ZI homopolymer poly(2-methacryloyloxyethyl phosphorylcholine) [poly(MPC)] scaffolds are synthesized in situ within lithium and/or sodium salt-based ILEs to construct a series of ionogels that contain between 3 and 15 wt % poly(MPC). Room-temperature ionic conductivity values of these ionogels are found to vary between approximately 1.3 and 2.2 mS cm-1. For sodium only and 1:1 lithium/sodium equimolar mixed salt ionogels containing 6 wt % poly(MPC), the ionic conductivity is found to improve by 14% compared to the neat ILE due to the presence of the ZI scaffold. Moreover, comparing the elastic modulus values of lithium- versus sodium-containing ionogels revealed a difference of up to 1 order of magnitude [10.6 vs 111 kPa, respectively, for 3 wt % poly(MPC)]. Molecular dynamics simulations of ionogel precursor solutions corroborate the experimental results by demonstrating differences in the lithium/ZI monomer and sodium/ZI monomer cluster size distributions formed, which is hypothesized to influence the scaffold network cross-link density obtained upon photopolymerization. This work provides insights into why ZI polymer-supported ionogel properties that are relevant for the development of safer electrolytes for lithium-ion and sodium-ion batteries depend upon the chemical identity of the alkali metal cation.
Collapse
Affiliation(s)
- Mossab K Alsaedi
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Meron Y Tadesse
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Venkat Ganesan
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Matthew J Panzer
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
3
|
Amici J, Banaudi G, Longo M, Gandolfo M, Zanon M, Francia C, Bodoardo S, Sangermano M. Efficient Biorenewable Membranes in Lithium-Oxygen Batteries. Polymers (Basel) 2023; 15:3182. [PMID: 37571076 PMCID: PMC10420843 DOI: 10.3390/polym15153182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Lithium-oxygen batteries, with their very high energy density (3500 Wh kg-1), could represent a real breakthrough in the envisioned strategies towards more efficient energy storage solutions for a less and less carbonated energy mix. However, the problems associated with this technology are numerous. A first one is linked to the high reactivity of the lithium metal anode, while a second one is linked to the highly oxidative environment created by the cell's O2 saturation. Keeping in mind the necessity for greener materials in future energy storage solutions, in this work an innovative lithium protective membrane is prepared based on chitosan, a polysaccharide obtained from the deacetylation reaction of chitin. Chitosan was methacrylated through a simple, one-step reaction in water and then cross-linked by UV-induced radical polymerization. The obtained membranes were successively activated in liquid electrolyte and used as a lithium protection layer. The cells prepared with protected lithium were able to reach a higher full discharge capacity, and the chitosan's ability to slow down degradation processes was verified by post-mortem analyses. Moreover, in long cycling conditions, the protected lithium cell performed more than 40 cycles at 0.1 mA cm-2, at a fixed capacity of 0.5 mAh cm-2, retaining 100% coulombic efficiency, which is more than twice the lifespan of the bare lithium cell.
Collapse
Affiliation(s)
- Julia Amici
- Department of Applied Science and Technology, Politecnico di Torino, c.so Duca degli Abruzzi 24, 10129 Torino, Italy (M.L.); (M.S.)
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Fraenza CC, Greenbaum SG, Suarez SN. Nuclear Magnetic Resonance Relaxation Pathways in Electrolytes for Energy Storage. Int J Mol Sci 2023; 24:10373. [PMID: 37373520 PMCID: PMC10299207 DOI: 10.3390/ijms241210373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Nuclear Magnetic Resonance (NMR) spin relaxation times have been an instrumental tool in deciphering the local environment of ionic species, the various interactions they engender and the effect of these interactions on their dynamics in conducting media. Of particular importance has been their application in studying the wide range of electrolytes for energy storage, on which this review is based. Here we highlight some of the research carried out on electrolytes in recent years using NMR relaxometry techniques. Specifically, we highlight studies on liquid electrolytes, such as ionic liquids and organic solvents; on semi-solid-state electrolytes, such as ionogels and polymer gels; and on solid electrolytes such as glasses, glass ceramics and polymers. Although this review focuses on a small selection of materials, we believe they demonstrate the breadth of application and the invaluable nature of NMR relaxometry.
Collapse
Affiliation(s)
- Carla C. Fraenza
- Physics Department, Hunter College, City University of New York, 695 Park Avenue, New York, NY 10065, USA; (C.C.F.); (S.G.G.)
| | - Steve G. Greenbaum
- Physics Department, Hunter College, City University of New York, 695 Park Avenue, New York, NY 10065, USA; (C.C.F.); (S.G.G.)
- Physics Department, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Sophia N. Suarez
- Physics Department, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- Physics Department, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| |
Collapse
|
5
|
Nguyen MT, Abbas UL, Qi Q, Shao Q. Distinct effects of zwitterionic molecules on ionic solvation in (ethylene oxide) 10: a molecular dynamics simulation study. Phys Chem Chem Phys 2023; 25:8180-8189. [PMID: 36880351 DOI: 10.1039/d2cp02301f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Ion-containing polymers play a critical role in various energy and sensing applications. Adjusting ionic solvation is one approach to tune the performance of ion-containing polymers. Small zwitterionic molecule additives have presented their ability to regulate ionic solvation because they possess two charged groups covalently connected together. One remaining question is how the effect of zwitterionic molecules on ionic solvation depends on their own chemical structures, especially the anionic groups. To shed light on this question, we investigate the ionic solvation structure and dynamics in LiTFSI/(ethylene oxide)10 (EO10) with the presence of three distinct zwitterionic molecules (MPC, SB, and CB) using molecular dynamics simulations (MPC: 2-methacryloyloxyethyl phosphorylcholine, SB: sulfobetaine ethylimidazole, CB: carboxybetaine ethylimidazole, and LiTFSI: lithium bis(trifluoromethylsulfonyl)-imide). The simulation systems include two Li+ : O(EO10) molar ratios: 1 : 6 and 1 : 18. The simulation results show that all three zwitterionic molecules reduce the Li+-EO10 coordination number in the order of MPC > CB > SB. In addition, nearly 10% of Li+ exclusively coordinates with MPC molecules, only 2-4% of Li+ exclusively cooridinates with CB molecules, while no Li+ exclusively coordinates with SB molecules. MPC molecules also present the most stable Li+ coordination among the three zwitterionic molecules. Our simulations indicate that zwitterionic molecule additives may benefit a high Li+ concentration environment. At a low Li+ concentration, all three zwitterionic molecules reduce the diffusion coefficient of Li+. However, at a high Li+ concentration, only SB molecules reduce the diffusion coefficient of Li+.
Collapse
Affiliation(s)
- Manh Tien Nguyen
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, 40506, USA.
| | - Usman L Abbas
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, 40506, USA.
| | - Qiao Qi
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, 40506, USA.
| | - Qing Shao
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, 40506, USA.
| |
Collapse
|
6
|
Mishra K, Devi N, Siwal SS, Zhang Q, Alsanie WF, Scarpa F, Thakur VK. Ionic Liquid-Based Polymer Nanocomposites for Sensors, Energy, Biomedicine, and Environmental Applications: Roadmap to the Future. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202187. [PMID: 35853696 PMCID: PMC9475560 DOI: 10.1002/advs.202202187] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/30/2022] [Indexed: 05/19/2023]
Abstract
Current interest toward ionic liquids (ILs) stems from some of their novel characteristics, like low vapor pressure, thermal stability, and nonflammability, integrated through high ionic conductivity and broad range of electrochemical strength. Nowadays, ionic liquids represent a new category of chemical-based compounds for developing superior and multifunctional substances with potential in several fields. ILs can be used in solvents such as salt electrolyte and additional materials. By adding functional physiochemical characteristics, a variety of IL-based electrolytes can also be used for energy storage purposes. It is hoped that the present review will supply guidance for future research focused on IL-based polymer nanocomposites electrolytes for sensors, high performance, biomedicine, and environmental applications. Additionally, a comprehensive overview about the polymer-based composites' ILs components, including a classification of the types of polymer matrix available is provided in this review. More focus is placed upon ILs-based polymeric nanocomposites used in multiple applications such as electrochemical biosensors, energy-related materials, biomedicine, actuators, environmental, and the aviation and aerospace industries. At last, existing challenges and prospects in this field are discussed and concluding remarks are provided.
Collapse
Affiliation(s)
- Kirti Mishra
- Department of ChemistryM.M. Engineering CollegeMaharishi Markandeshwar (Deemed to be University)Mullana‐AmbalaHaryana133207India
| | - Nishu Devi
- Mechanics and Energy LaboratoryDepartment of Civil and Environmental EngineeringNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
| | - Samarjeet Singh Siwal
- Department of ChemistryM.M. Engineering CollegeMaharishi Markandeshwar (Deemed to be University)Mullana‐AmbalaHaryana133207India
| | - Qibo Zhang
- Key Laboratory of Ionic Liquids MetallurgyFaculty of Metallurgical and Energy EngineeringKunming University of Science and TechnologyKunming650093P. R. China
- State Key Laboratory of Complex Nonferrous Metal Resources Cleaning Utilization in Yunnan ProvinceKunming650093P. R. China
| | - Walaa F. Alsanie
- Department of Clinical Laboratories SciencesThe Faculty of Applied Medical SciencesTaif UniversityP.O. Box 11099Taif21944Saudi Arabia
| | - Fabrizio Scarpa
- Bristol Composites InstituteUniversity of BristolBristolBS8 1TRUK
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research CenterScotland's Rural College (SRUC)Kings Buildings, West Mains RoadEdinburghEH9 3JGUK
- School of EngineeringUniversity of Petroleum and Energy Studies (UPES)DehradunUttarakhand248007India
| |
Collapse
|
7
|
Wang J, Bian J, Pu B, Wang Y, Deng M. Facile fabrication of high performance zwitterionic P(
NVP
‐co
‐SPE
)/polyvinyl alcohol hydrogel polyelectrolyte for capacitor. J Appl Polym Sci 2022. [DOI: 10.1002/app.52905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jin Wang
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering Hefei University of Technology Hefei China
| | - Jingjing Bian
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering Hefei University of Technology Hefei China
| | - Bin Pu
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering Hefei University of Technology Hefei China
| | - Yuanlu Wang
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering Hefei University of Technology Hefei China
| | - Mengde Deng
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering Hefei University of Technology Hefei China
| |
Collapse
|
8
|
Shielding the electrostatic attraction by design of zwitterionic single ion conducting polymer electrolyte with high dielectric constant. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Makhlooghiazad F, O'Dell LA, Porcarelli L, Forsyth C, Quazi N, Asadi M, Hutt O, Mecerreyes D, Forsyth M, Pringle JM. Zwitterionic materials with disorder and plasticity and their application as non-volatile solid or liquid electrolytes. NATURE MATERIALS 2022; 21:228-236. [PMID: 34795402 DOI: 10.1038/s41563-021-01130-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 09/13/2021] [Indexed: 05/21/2023]
Abstract
Zwitterionic materials can exhibit unique characteristics and are highly tunable by variation to the covalently bound cationic and anionic moieties. Despite the breadth of properties and potential uses reported to date, for electrolyte applications they have thus far primarily been used as additives or for making polymer gels. However, zwitterions offer intriguing promise as electrolyte matrix materials that are non-volatile and charged but non-migrating. Here we report a family of zwitterions that exhibit molecular disorder and plasticity, which allows their use as a solid-state conductive matrix. We have characterized the thermal, morphological and structural properties of these materials using techniques including differential scanning calorimetry, scanning electron microscopy, solid-state NMR and X-ray crystallography. We report the physical and transport properties of zwitterions combined with lithium salts and a lithium-functionalized polymer to form solid or high-salt-content liquid electrolytes. We demonstrate that the zwitterion-based electrolytes can allow high target ion transport and support stable lithium metal cell cycling. The ability to use disordered zwitterionic materials as electrolyte matrices for high target ion conduction, coupled with an extensive scope for varying the chemical and physical properties, has important implications for the future design of non-volatile materials that bridge the choice between traditional molecular and ionic solvent systems.
Collapse
Affiliation(s)
- Faezeh Makhlooghiazad
- Institute for Frontier Materials, Deakin University, ARC Centre of Excellence for Electromaterials Science, Waurn Ponds, Victoria, Australia
| | - Luke A O'Dell
- Institute for Frontier Materials, Deakin University, ARC Centre of Excellence for Electromaterials Science, Waurn Ponds, Victoria, Australia
| | - Luca Porcarelli
- Institute for Frontier Materials, Deakin University, ARC Centre of Excellence for Electromaterials Science, Waurn Ponds, Victoria, Australia
- Joxe Mari Korta Center, POLYMAT, University of the Basque Country, Donostia-San Sebastian, Spain
| | - Craig Forsyth
- School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Nurul Quazi
- Boron Molecular, Noble Park, Victoria, Australia
| | - Mousa Asadi
- Boron Molecular, Noble Park, Victoria, Australia
| | - Oliver Hutt
- Boron Molecular, Noble Park, Victoria, Australia
| | - David Mecerreyes
- Joxe Mari Korta Center, POLYMAT, University of the Basque Country, Donostia-San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Maria Forsyth
- Institute for Frontier Materials, Deakin University, ARC Centre of Excellence for Electromaterials Science, Waurn Ponds, Victoria, Australia
| | - Jennifer M Pringle
- Institute for Frontier Materials, Deakin University, ARC Centre of Excellence for Electromaterials Science, Waurn Ponds, Victoria, Australia.
| |
Collapse
|
10
|
Sultana S, Ahmed K, Jiwanti PK, Wardhana BY, Shiblee MDNI. Ionic Liquid-Based Gels for Applications in Electrochemical Energy Storage and Conversion Devices: A Review of Recent Progress and Future Prospects. Gels 2021; 8:2. [PMID: 35049537 PMCID: PMC8774367 DOI: 10.3390/gels8010002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/16/2022] Open
Abstract
Ionic liquids (ILs) are molten salts that are entirely composed of ions and have melting temperatures below 100 °C. When immobilized in polymeric matrices by sol-gel or chemical polymerization, they generate gels known as ion gels, ionogels, ionic gels, and so on, which may be used for a variety of electrochemical applications. One of the most significant research domains for IL-based gels is the energy industry, notably for energy storage and conversion devices, due to rising demand for clean, sustainable, and greener energy. Due to characteristics such as nonvolatility, high thermal stability, and strong ionic conductivity, IL-based gels appear to meet the stringent demands/criteria of these diverse application domains. This article focuses on the synthesis pathways of IL-based gel polymer electrolytes/organic gel electrolytes and their applications in batteries (Li-ion and beyond), fuel cells, and supercapacitors. Furthermore, the limitations and future possibilities of IL-based gels in the aforementioned application domains are discussed to support the speedy evolution of these materials in the appropriate applicable sectors.
Collapse
Affiliation(s)
- Sharmin Sultana
- Department of Chemistry, Faculty of Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh;
| | - Kumkum Ahmed
- College of Engineering, Shibaura Institute of Technology, 3 Chome-7-5 Toyosu, Tokyo 135-8548, Japan
| | - Prastika Krisma Jiwanti
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya 60115, Indonesia; (P.K.J.); (B.Y.W.)
| | - Brasstira Yuva Wardhana
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya 60115, Indonesia; (P.K.J.); (B.Y.W.)
| | - MD Nahin Islam Shiblee
- Department of Mechanical Systems Engineering, Yamagata University, 4 Chome-3-16 Jonan, Yonezawa 992-8510, Yamagata, Japan;
| |
Collapse
|
11
|
Kozakiewicz J, Przybylski J, Hamankiewicz B, Sylwestrzak K, Trzaskowska J, Krajewski M, Ratyński M, Sarna W, Czerwiński A. UV-Cured Poly(Siloxane-Urethane)-Based Polymer Composite Materials for Lithium Ion Batteries-The Effect of Modification with Ionic Liquids. MATERIALS 2020; 13:ma13214978. [PMID: 33167408 PMCID: PMC7663818 DOI: 10.3390/ma13214978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/29/2022]
Abstract
The results of studies on the synthesis and characterization of conductive polymer composite materials designed as potential separators for lithium ion batteries are presented. The conductive polymer composites were prepared from UV-cured poly(siloxane-urethanes)s (PSURs) containing poly(ethylene oxide) (PEO) segments and modified with lithium salts and ionic liquids (ILs). The most encouraging results in terms of specific conductivity and mechanical properties of the composite were obtained when part of UV-curable PSUR prepolymer was replaced with a reactive UV-curable IL. Morphology of the composites modified with ILs or containing a standard ethylene carbonate/dimethyl carbonate mixture (EC/DMC) as solvent was compared. It was found that the composites showed a two-phase structure that did not change when non-reactive ILs were applied instead of EC/DMC but was much affected when reactive UV-curable ILs were used. The selected IL-modified UV-cured PSUR composite that did not contain flammable EC/DMC solvent was preliminarily tested as gel polymer electrolyte and separator for lithium ion batteries.
Collapse
Affiliation(s)
- Janusz Kozakiewicz
- Department of Polymer Technology and Processing, Łukasiewicz Research Network—Industrial Chemistry Institute, 01-793 Warsaw, Poland; (J.P.); (K.S.); (J.T.); (W.S.)
- Correspondence: (J.K.); (B.H.)
| | - Jarosław Przybylski
- Department of Polymer Technology and Processing, Łukasiewicz Research Network—Industrial Chemistry Institute, 01-793 Warsaw, Poland; (J.P.); (K.S.); (J.T.); (W.S.)
| | - Bartosz Hamankiewicz
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland; (M.K.); (M.R.); (A.C.)
- Correspondence: (J.K.); (B.H.)
| | - Krystyna Sylwestrzak
- Department of Polymer Technology and Processing, Łukasiewicz Research Network—Industrial Chemistry Institute, 01-793 Warsaw, Poland; (J.P.); (K.S.); (J.T.); (W.S.)
| | - Joanna Trzaskowska
- Department of Polymer Technology and Processing, Łukasiewicz Research Network—Industrial Chemistry Institute, 01-793 Warsaw, Poland; (J.P.); (K.S.); (J.T.); (W.S.)
| | - Michal Krajewski
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland; (M.K.); (M.R.); (A.C.)
| | - Maciej Ratyński
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland; (M.K.); (M.R.); (A.C.)
| | - Witold Sarna
- Department of Polymer Technology and Processing, Łukasiewicz Research Network—Industrial Chemistry Institute, 01-793 Warsaw, Poland; (J.P.); (K.S.); (J.T.); (W.S.)
| | - Andrzej Czerwiński
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland; (M.K.); (M.R.); (A.C.)
| |
Collapse
|