1
|
Cheng S, Du K, Wang X, Han Y, Li L, Wen G. Fabrication of Hierarchical MOF-Derived NiCo 2S 4@Mo-Doped Co-LDH Arrays for High-Energy-Density Asymmetric Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2663. [PMID: 37836304 PMCID: PMC10574694 DOI: 10.3390/nano13192663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
The rational fabrication of composite structures made of mixed components has shown great potential for boosting the energy density of supercapacitors. Herein, an elaborate hierarchical MOF-derived NiCo2S4@Mo-doped Co-LDH arrays hybrid electrode was fabricated through a step-wise method. By leveraging the synergistic effects of a uniform array of NiCo2S4 nanowires as the core and an MOF-derived porous shell, the NiCo2S4@Mo-doped Co-LDH hybrid electrode demonstrates an exceptional specific capacitance of 3049.3 F g-1 at 1 A g-1. Even at a higher current density of 20 A g-1, the capacitance remains high at 2458.8 F g-1. Moreover, the electrode exhibits remarkable cycling stability, with 91% of the initial capacitance maintained after 10,000 cycles at 10 A g-1. Additionally, the as-fabricated asymmetric supercapacitor (ASC) based on the NiCo2S4@Mo-doped Co-LDH electrode achieves an impressive energy density of 97.5 Wh kg-1 at a power density of 835.6 W kg-1. These findings provide a promising approach for the development of hybrid-structured electrodes, enabling the realization of high-energy-density asymmetric supercapacitors.
Collapse
Affiliation(s)
| | | | | | | | | | - Guojun Wen
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China; (S.C.)
| |
Collapse
|
2
|
Zang X, Tang X, Liang L, Liu X, Zhang X, Ma X, Liu G, Li C, Cao N, Shao Q. Solvent-Controlled Morphology of Zinc-Cobalt Bimetallic Sulfides for Supercapacitors. Molecules 2023; 28:6578. [PMID: 37764354 PMCID: PMC10534812 DOI: 10.3390/molecules28186578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Bimetallic sulfides offer high theoretical specific capacitance and good stability as electrode materials due to their diverse redox reactions, larger specific surface areas, and better conductivity. The morphology of the electrode material is an important influencing factor for the electrochemical properties. Herein, a series of ZnCoS electrode materials with different morphologies were prepared by varying the solvent in the solvothermal reaction, and the effects of different microstructures on the electrochemical properties of ZnCoS were investigated. The ratio of water and ethanol in the solvent was controlled to modulate the microstructure of the as-prepared ZnCoS materials. XRD and XPS revealed the physical and chemical structure of the ZnCoS materials. SEM and TEM observations showed that the microstructure of ZnCoS transformed from one-dimensional wires to two-dimensional sheets with increasing amounts of ethanol. The maximum specific capacitance of the as-prepared ZnCoS materials is 6.22 F cm-2 at a current density of 5 mA cm-2, which is superior to that of most previously reported bimetallic sulfides. The enhanced electrochemical performance could be ascribed to its sheet-assembled spherical structure, which not only shortens the path of ion diffusion but also increases the contact between surface active sites and the electrolyte. Moreover, the spherical structure provides numerous void spaces for buffering the volume expansion and penetration of the electrolyte, which would be favorable for electrochemical reactions. Furthermore, the ZnCoS electrodes were coupled with activated carbon (AC) electrodes to build asymmetric supercapacitors (ASCs). The ASC device exhibits a maximum energy density of 0.124 mWh cm-2 under a power density of 2.1 mW cm-2. Moreover, even under a high-power density of 21 mW cm-2, the energy density can still reach 0.055 mWh cm-2.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Qingguo Shao
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China (G.L.)
| |
Collapse
|
3
|
Sonia YK, Srivastav S, Meher SK. Graphitic Carbon Nitride-Induced Multifold Enhancement in Electrochemical Charge Storage of CoS-NiCo 2S 4 for All-Solid-State Hybrid Supercapacitors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37336781 DOI: 10.1021/acs.langmuir.3c00836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
In order to improve the electro-microstructural physiognomics of electrode materials for applications in better efficiency supercapacitors, herein graphitic carbon nitride (GCN)-heterostructurized CoS-NiCo2S4 is designed using a controlled material growth synthesis procedure. The developed CoS-NiCo2S4/GCN possesses ample hydrophilicity, possible charge transfer between GCN and CoS-NiCo2S4, uniform phase distribution, and distinctive microstructural characteristics. The preliminary electrochemical studies in the three-electrode setup show GCN-induced lower charge transfer resistance and very unique Warburg profile corresponding to extremely low diffusion resistance in CoS-NiCo2S4/GCN as compared to pristine CoS-NiCo2S4. Furthermore, GCN is found to significantly induce surface-controlled (capacitive-type) charge storage and frequency-independent specific capacitance up to 10 Hz in CoS-NiCo2S4. Furthermore, the CoS-NiCo2S4||N-rGO and CoS-NiCo2S4/GCN||N-rGO all-solid-state hybrid supercapacitor (ASSHSC) devices were fabricated using N-rGO as the negative electrode material, and the inducing effect of GCN on the supercapacitive charge storage performance of the devices is thoroughly studied. Results demonstrate that the mass specific capacitance and areal capacitance of CoS-NiCo2S4/GCN||N-rGO are ∼2 and ∼4 times more than those of the CoS-NiCo2S4||N-rGO ASSHSC device, respectively. Furthermore, the CoS-NiCo2S4/GCN||N-rGO offers more energy density, rate energy density, and additional charge-discharge durability (over ∼10,000 cycles) than the CoS-NiCo2S4||N-rGO ASSHSC device. The multifold performance improvement of CoS-NiCo2S4 with GCN heterostructurization is ascribed to GCN-induced supplemented porosity and pore widening, ionic nonstoichiometry (Ni2±δ, Co2±δ, and Co3±δ), wettability, integrated enhancement in the conductivity, and electroactive-ion accessibility in the CoS-NiCo2S4/GCN heterocomposite. The present study offers vital physicoelectrochemical insights toward the future development of low cost and high-performance electrode materials, and their implementation in high-rate and operationally stable all-solid-state hybrid supercapacitor devices, for application in the next-generation front-line technologies.
Collapse
Affiliation(s)
- Yogesh Kumar Sonia
- Materials Electrochemistry & Energy Storage Laboratory, Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan 302017, India
| | - Siddhant Srivastav
- Materials Electrochemistry & Energy Storage Laboratory, Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan 302017, India
| | - Sumanta Kumar Meher
- Materials Electrochemistry & Energy Storage Laboratory, Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan 302017, India
| |
Collapse
|
4
|
He W, Jiang S, Pang M, Li J, Pang M, Mao M, Wang R, Yang H, Pan Q, Zhao J. A Free-standing NiMoO4@Mg-Co(OH)F Core-shell Nanocomposites Supported on Ni foam for Asymmetric Supercapacitor Applications. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Design of an Internal/External Bicontinuous Conductive Network for High-Performance Asymmetrical Supercapacitors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238168. [PMID: 36500261 PMCID: PMC9736552 DOI: 10.3390/molecules27238168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
High-energy density supercapacitors have attracted extensive attention due to their electrode structure design. A synergistic effect related to core-shell structure can improve the energy storage capacity and power density of electrode materials. The Ni-foam (NF) substrate coupled with polypyrrole (PPy) conductive coating can serve as an internal/external bicontinuous conductive network. In this work, the distinctive PPy@FeNi2S4@NF and PPy@NiCo2S4@NF materials were prepared by a simple two-step hydrothermal synthesis with a subsequent in situ polymerization method. PPy@FeNi2S4@NF and PPy@NiCo2S4@NF could deliver ultrahigh specific capacitances of 3870.3 and 5771.4 F·g-1 at 1 A·g-1 and marvelous cycling capability performances of 81.39% and 93.02% after 5000 cycles. The asymmetric supercapacitors composed of the prepared materials provided a high-energy density of over 47.2 Wh·kg-1 at 699.9 W·kg-1 power density and 67.11 Wh·kg-1 at 800 W·kg-1 power density. Therefore, the self-assembled core-shell structure can effectively improve the electrochemical performance and will have an effective service in advanced energy-storage devices.
Collapse
|
6
|
Shi Z, Shen X, Zhang Z, Wang X, Gao N, Xu Z, Chen X, Liu X. Hierarchically urchin-like hollow NiCo 2S 4 prepared by a facile template-free method for high-performance supercapacitors. J Colloid Interface Sci 2021; 604:292-300. [PMID: 34265686 DOI: 10.1016/j.jcis.2021.06.144] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/15/2022]
Abstract
Hollow structures draw much attention for high energy density supercapacitors due to their large hollow cavities, high specific surface area, and low interfacial contact resistance. However, constructing hierarchical hollow structures remains a challenge. Herein, we reported a facile template-free method for a novel urchin-like hollow nickel cobalt sulfide (NiCo2S4). The hollow interior and urchin exterior remarkably improved the specific capacitance and accommodated structural collapse caused by electrochemical reactions. Owing to these features, the urchin-like hollow NiCo2S4 spheres exhibited an impressive capacitance of 1398F g-1 at 1 A g-1 and maintained 1110F g-1 with a large current density of 10 A g-1. The hybrid supercapacitor fabricated by NiCo2S4 and active carbon possesses an energy density of 39.3 Wh kg-1 at a power density of 749.6 W kg-1 and an outstanding cycling stability of 74.4% retention after 5000 cycles. Our work presents a facile method of constructing a hollow structure of binary sulfide materials and also makes progress on highly efficient supercapacitors.
Collapse
Affiliation(s)
- Zeqi Shi
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, PR China
| | - Xuetao Shen
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, PR China.
| | - Zhe Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, PR China
| | - Xi Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, PR China
| | - Ning Gao
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, PR China
| | - Zhanwei Xu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, PR China
| | - Xueying Chen
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, PR China
| | - Xinyue Liu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, PR China
| |
Collapse
|
7
|
Yasnur S, Saha S, Ray A, Das M, Mukherjee A, Das S. Effect of Electrolyte Concentration on Electrochemical Performance of Bush Like α‐Fe
2
O
3
Nanostructures. ChemistrySelect 2021. [DOI: 10.1002/slct.202101641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sk Yasnur
- Department of Instrumentation Science Jadavpur University, Jadavpur Kolkata 700032 India
- Department of Physics Tarakeswar Degree College Tarakeswar Hooghly 712410 India
| | - Samik Saha
- Department of Instrumentation Science Jadavpur University, Jadavpur Kolkata 700032 India
- Department of Physics Government General Degree College Dantan-II West Bengal India
| | - Apurba Ray
- Department of Instrumentation Science Jadavpur University, Jadavpur Kolkata 700032 India
| | - Mahimaranjan Das
- Department of Physics The University of Burdwan Burdwan 713104 India
| | - Ayan Mukherjee
- Department of Physics College of Commerce Arts and Science Pataliputra University Patna 800020 India
| | - Sachindranath Das
- Department of Instrumentation Science Jadavpur University, Jadavpur Kolkata 700032 India
| |
Collapse
|
8
|
Xue B, Guo Y, Huang Z, Gu S, Zhou Q, Yang W, Li K. Controllable synthesis of ZIF-derived Ni xCo 3-xO 4 nanotube array hierarchical structures based on self-assembly for high-performance hybrid alkaline batteries. Dalton Trans 2021; 50:9088-9102. [PMID: 34227630 DOI: 10.1039/d1dt01419f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a novel NixCo3-xO4 nanotube array hierarchical structure derived from zeolitic imidazolate frameworks (ZIFs) is grown on Ni foam (NixCo3-xO4 NAHS/Ni foam) using the template-assisted and self-assembly approach for a high-performance hybrid energy storage device in alkaline solution. The material characteristics of the resultant samples were characterized by XPS, XRD, ICP, SEM, TEM and BET. Due to the unique hollow structure with a large specific surface area and the exposure of large active sites originating from ZIFs, the optimal NixCo3-xO4 NAHS/Ni foam exhibits substantially enhanced electrochemical properties. The NixCo3-xO4 NAHS/Ni foam directly acts as an electrode, which provides an excellent specific capacity of 290.48 mA h g-1 at 1 A g-1. Subsequently, the corresponding hybrid alkaline batteries that consist of NixCo3-xO4 NAHS/Ni foam and carbon materials display a highly satisfactory specific capacity of 54.94 mA h g-1 at 1 A g-1, a satisfactory long-term stability of 85.47% after 2000 cycles, a maximum energy density of 43.95 W h kg-1 and a power density of 8000 W kg-1. This work combines the design of the electronic structure with the optimization of composition, and provides a reference for the application of hybrid rechargeable alkaline batteries (RABs).
Collapse
Affiliation(s)
- Bei Xue
- Department of Materials Physics, School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China.
| | - Yao Guo
- Shaanxi Key Laboratory of Fiber Reinforced Light Composite Materials, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhaofeng Huang
- Poly-doctor Petroleum Technology Co., Ltd., Beijing, China
| | - Shengyue Gu
- Department of Materials Physics, School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China.
| | - Qian Zhou
- Department of Materials Physics, School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China.
| | - Wei Yang
- Department of Materials Physics, School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China.
| | - Kezhi Li
- Shaanxi Key Laboratory of Fiber Reinforced Light Composite Materials, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
9
|
Hong X, Wang X, Fu J, Li Y, Liang B. Spreading GO nanosheets-coated nickel foam decorated by NiCo2O4/NiCo2S4 nanoarrays for high-performance supercapacitor electrodes. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Cao W, Liu Y, Xu F, Xia Q, Du G, Fan Z, Chen N. Metal-organic framework derived carbon-coated spherical bimetallic nickel-cobalt sulfide nanoparticles for hybrid supercapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138433] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
MgCo2O4@NiMn layered double hydroxide core-shell nanocomposites on nickel foam as superior electrode for all-solid-state asymmetric supercapacitors. J Colloid Interface Sci 2021; 592:455-467. [DOI: 10.1016/j.jcis.2021.02.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022]
|
12
|
Acharya J, Ojha GP, Kim BS, Pant B, Park M. Modish Designation of Hollow-Tubular rGO-NiMoO 4@Ni-Co-S Hybrid Core-shell Electrodes with Multichannel Superconductive Pathways for High-Performance Asymmetric Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17487-17500. [PMID: 33844490 DOI: 10.1021/acsami.1c00137] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The scrupulous designation of hollow and porous electroactive materials incorporating prolific redox-active polyphase transition-metal oxide decorated with polyphase transition-metal sulfide onto rGO (reduced graphene oxide)-supported conductive substrate has never been an easy task due to the very good coordination affair of sulfur toward transition metals. Herein, cost-effective hydrothermal growth followed by a metal-organic framework (MOF)-mediated sulfidation approach is employed to achieve burl-like Ni-Co-S nanomaterial-integrated hollow and porous NiMoO4 nanotubes onto rGO-coated Ni foam (rGO-NiMoO4@Ni-Co-S) as the electrode material for supercapacitors. The open framework of the rGO-Co-MOF template after the etching and sulfidation process not only enables the creation of a tubular structure of NiMoO4 nanorods but also provides convenient ion-electron pathways to promote rapid faradic reactions for the hybrid composite electrode. Owing to the unique hollow and tubular structure, the as-fabricated rGO-NiMoO4@Ni-Co-S electrode exhibits a high specific capacity of 318 mA h g-1 at 1 A g-1 and remarkable cyclic performance of 88.87% after 10,000 consecutive charge-discharge cycles in an aqueous 2 M KOH electrolyte on a three-electrode configuration. Moreover, the assembled rGO-NiMoO4@Ni-Co-S//rGO-MDC (MOF-derived carbon) asymmetric supercapacitor device exhibits a satisfactory energy density of 57.24 W h kg-1 at a power density of 801.8 W kg-1 with an admirable life span of 90.89% after 10,000 repeated cycles.
Collapse
Affiliation(s)
- Jiwan Acharya
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju, Chonbuk 55338, South Korea
| | - Gunendra Prasad Ojha
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju, Chonbuk 55338, South Korea
| | - Byoung-Suhk Kim
- Department of Organic Materials & Fiber Engineering, Jeonbuk National University, Jeonju 54896, South Korea
| | - Bishweshwar Pant
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju, Chonbuk 55338, South Korea
| | - Mira Park
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju, Chonbuk 55338, South Korea
| |
Collapse
|
13
|
Ren F, Ji Y, Tan S, Chen F. Sponge-like NiCo2S4 nanosheets supported on nickel foam as high-performance electrode materials for asymmetric supercapacitors. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01085e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Herein, binder-free sponge-like NiCo2S4 nanosheets supported on Ni foam with ultra-high mass loading were synthesized via a facile one-step hydrothermal route.
Collapse
Affiliation(s)
- Fuyong Ren
- College of Science
- University of Shanghai for Science and Technology
- 200093 Shanghai
- China
| | - Yajun Ji
- College of Science
- University of Shanghai for Science and Technology
- 200093 Shanghai
- China
| | - Shufen Tan
- College of Science
- University of Shanghai for Science and Technology
- 200093 Shanghai
- China
| | - Fei Chen
- College of Science
- University of Shanghai for Science and Technology
- 200093 Shanghai
- China
| |
Collapse
|
14
|
Honeycombed-like nanosheet array composite NiCo2O4/rGO for efficient methanol electrooxidation and supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137145] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Patil AM, Kitiphatpiboon N, An X, Hao X, Li S, Hao X, Abudula A, Guan G. Fabrication of a High-Energy Flexible All-Solid-State Supercapacitor Using Pseudocapacitive 2D-Ti 3C 2T x-MXene and Battery-Type Reduced Graphene Oxide/Nickel-Cobalt Bimetal Oxide Electrode Materials. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52749-52762. [PMID: 33185100 DOI: 10.1021/acsami.0c16221] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Owing to excellent metallic conductivity, hydrophilic surfaces, and surface redox properties, a two-dimensional (2D) metal carbide of Ti3C2Tx-MXene could serve as a promising pseudocapacitive electrode material for energy storage devices. Meanwhile, the 2D reduced graphene oxide (rGO) combining with the hierarchical cubic spinel nickel-cobalt bimetal oxide (NiCo2O4) nanospikes could control ion diffusion for charge storage, thereby facilitating the improvement of the energy density of a supercapacitor. As per the strategy, the pseudocapacitive 2D Ti3C2Tx was loaded on a flexible acid-treated carbon fiber (ACF) backbone to prepare a Ti3C2Tx/ACF negative electrode by a convenient drop-casting method. Meanwhile, 2D rGO was deposited on ACF by a simple dip-dry process, which was further decorated by the spinel NiCo2O4 nanospikes using a hydrothermal method to obtain a NiCo2O4@rGO/ACF positive electrode. The fabricated Ti3C2Tx/ACF electrode exhibited an excellent specific capacitance of 246.9 F/g (197.5 mF/cm2) at 4 mA/cm2 along with 96.7% capacity retention over 5000 charge/discharge cycles, whereas the NiCo2O4@rGO/ACF electrode showed a specific capacitance of 1487 F/g (458.3 mA h/g) at 3 mA/cm2 with a cycling stability of 88.2% over 10 000 charge/discharge cycles. As a result, a flexible all-solid-state hybrid supercapacitor (FHSC) device using the pseudocapacitive Ti3C2Tx/ACF on the negative side with a widespread voltage window and the battery-type NiCo2O4@rGO/ACF on the positive side with high electrochemical activity delivered an excellent volumetric capacitance of 2.32 F/cm3 (141.9 F/g) at a current density of 5 mA/cm2 with a high-energy density of 44.36 Wh/kg (0.72 mWh/cm3) at a power density of 985 W/kg (16.13 mW/cm3) along with a cycling stability of 90.48% over 4500 charge/discharge cycles. Therefore, the pseudocapacitive 2D Ti3C2Tx/ACF negative electrode could replace carbon-based electrodes and a combination of it with the battery-type NiCo2O4@rGO/ACF positive electrode should be a promising way to step up the energy density of a supercapacitor.
Collapse
Affiliation(s)
- Amar M Patil
- Energy Conversion Engineering Laboratory, Institute of Regional Innovation (IRI), Hirosaki University, 2-1-3 Matsubara, Aomori 030-0813, Japan
| | - Nutthaphak Kitiphatpiboon
- Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8560, Japan
| | - Xiaowei An
- Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8560, Japan
| | - Xiaoqiong Hao
- Energy Conversion Engineering Laboratory, Institute of Regional Innovation (IRI), Hirosaki University, 2-1-3 Matsubara, Aomori 030-0813, Japan
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Shasha Li
- College of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030012, P. R. China
| | - Xiaogang Hao
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Abuliti Abudula
- Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8560, Japan
| | - Guoqing Guan
- Energy Conversion Engineering Laboratory, Institute of Regional Innovation (IRI), Hirosaki University, 2-1-3 Matsubara, Aomori 030-0813, Japan
- Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8560, Japan
| |
Collapse
|
16
|
Singh A, Ojha AK. Designing vertically aligned porous NiCo 2O 4@MnMoO 4 Core@Shell nanostructures for high-performance asymmetric supercapacitors. J Colloid Interface Sci 2020; 580:720-729. [PMID: 32717440 DOI: 10.1016/j.jcis.2020.07.062] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/28/2020] [Accepted: 07/12/2020] [Indexed: 11/28/2022]
Abstract
NiCo2O4@MnMoO4 core@shell nanostructures are synthesized as electrode material using hydrothermal method for the fabrication of asymmetric supercapacitor (ASC) device. The NiCo2O4@MnMoO4 electrode shows better electrochemical performance with specific capacitance (SC) of 1821 F/g at current density of 5 A/g and cycling stability of 94%. The NiCo2O4@MnMoO4 core@shell electrode shows better SC compared to pure NiCo2O4 and MnMoO4 electrodes. An ASC device is fabricated using NiCo2O4@MnMoO4 as a positive and rGO/Fe2O3 as negative electrode materials. Remarkably, the fabricated device shows a SC of 294 F/g at current density 4 A/g, with an energy density of 91.87 Wh/kg at a power density of 374.15 W/kg. The device shows good reversibility with cycling stability of 68% after 2,000 cycles. The ASC device is used to illuminate nine green color LEDs for 35 min. Therefore, the present report provides a simple method to fabricate efficient and stable energy storage devices for industrial applications.
Collapse
Affiliation(s)
- Arvind Singh
- Department of Physics, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Animesh K Ojha
- Department of Physics, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| |
Collapse
|
17
|
Salarizadeh P, Askari MB, Hooshyari K, Saeidfirozeh H. Synergistic effect of MoS 2 and Fe 3O 4 decorated reduced graphene oxide as a ternary hybrid for high-performance and stable asymmetric supercapacitors. NANOTECHNOLOGY 2020; 31:435401. [PMID: 32610307 DOI: 10.1088/1361-6528/aba1bd] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Today, two-dimensional materials for use in energy devices have attracted the attention of researchers. Molybdenum disulfide is promising as an electrode material with unique physical properties and a high exposed surface area. However, there are still problems that need to be addressed. In this study, we prepared a hybrid containing MoS2, Fe3O4, and reduced graphene oxide (rGO) by a two-step hydrothermal method. This nanocomposite is well structurally and morphologically identified, and its electrochemical performance is then evaluated for use in supercapacitors. According to the galvanostatic charge-discharge results, this nanocomposite shows a good specific capacity, equivalent to 527 F g-1 at 0.5 mA cm-2. The results of the multi-cycle stability test (5000 cycles) indicate a significant stability rate capability, with 93% of the electrode capacity remaining after 5000 cycles. The reason for this could be the synergistic effect between rGO and MoS2 as well as between molybdenum and iron in the faradic reaction in the charge storage process. Fe3O4 and MoS2 provide electroactive sites for the faradic process and electrolyte accessibility and rGO supply conductivity.
Collapse
Affiliation(s)
- Parisa Salarizadeh
- High-Temperature Fuel Cell Research Department, Vali-e-Asr University of Rafsanjan 1599637111, Rafsanjan, Iran
| | | | | | | |
Collapse
|
18
|
Hui S, Ju T, Lin X, Li Y, Wang Y, Ying Z. Fabrication of NiCo 2S 4/carbon-filled nickel foam complex as an advanced binder-free electrode for supercapacitors. Dalton Trans 2020; 49:12345-12353. [PMID: 32845254 DOI: 10.1039/d0dt02160a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel strategy, composed of epoxy-resin filling, carbonization, and hydrothermal growing of NiCo2S4 nanorods, was developed to enlarge the surface area of nickel foam (NF) for loading electrochemically active materials and to successfully fabricate NiCo2S4/carbon-filled NF binder-free electrodes. Due to the certain electrical conductivity of the filled epoxy-resin-derived carbon and the enlarged loading surface area, the targeted electrode possesses outstanding electrochemical energy storage performance, with a maximum specific capacitance of 9.28 F cm-2 at a current density of 4 mA cm-2, more than 6 times the 1.46 F cm-2 of the NF-based electrode formed via directly growing NiCo2S4 on NF, and with a specific capacitance retention of about 60% after 2000 charge/discharge cycles. Our strategy provides a promising avenue for constructing a high-performance NF-based binder-free electrode and our resultant electrode presents great application potential in electrochemical energy storage.
Collapse
Affiliation(s)
- Shengjie Hui
- Department of Materials Science and Engineering, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | | | | | | | | | | |
Collapse
|
19
|
Singh A, Kumar S, Ojha AK. Charcoal derived graphene quantum dots for flexible supercapacitor oriented applications. NEW J CHEM 2020. [DOI: 10.1039/d0nj00899k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this article, charcoal is used as a new raw material for the synthesis of high yield graphene quantum dots (GQDs) for supercapacitor application.
Collapse
Affiliation(s)
- Arvind Singh
- Department of Physics
- Motilal Nehru National Institute of Technology Allahabad
- Allahabad-211004
- India
| | - Sumeet Kumar
- Department of Physics
- Tezpur University
- Napaam
- Tezpur 784028
- India
| | - Animesh K. Ojha
- Department of Physics
- Motilal Nehru National Institute of Technology Allahabad
- Allahabad-211004
- India
| |
Collapse
|