1
|
Jianming L, Jin Z, Shang J, Jianguo Z. Synergistic effect of porous carbon shell confinement and catalytic conversion of nickel nanoparticle cores for improved lithium-sulfur batteries. RSC Adv 2023; 13:12792-12798. [PMID: 37114022 PMCID: PMC10126741 DOI: 10.1039/d3ra01339a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Lithium-sulfur batteries (LSBs) are some of the most promising energy storage systems to break the ceiling of Li-ion batteries. However, the notorious shuttle effect and slow redox kinetics give rise to low sulfur utilization and discharge capacity, poor rate performance, and fast capacity decay. It is proved that the reasonable design of the electrocatalyst is one of the important ways to improve the electrochemical performance of LSBs. Here, a core-shell structure with gradient adsorption capacity for reactants and sulfur products was designed. The Ni nanoparticles core coated with graphite carbon shell was prepared by one-step pyrolysis of Ni-MOF precursors. The design takes advantage of the principle that the adsorption capacity decreases from the core to the shell, and the Ni core with strong adsorption capacity is easy to attract and capture soluble lithium polysulfide (LiPS) during the discharge/charging process. This trapping mechanism prevents the diffusion of LiPSs to the outer shell and effectively inhibits the shuttle effect. In addition, the Ni nanoparticles within the porous carbon, as the active center, expose most of the inherent active sites to the surface area, thus achieving a rapid transformation of LiPSs, significantly reducing the reaction polarization, and improving the cyclic stability and reaction kinetics of LSB. Therefore, the S/Ni@PC composites exhibited excellent cycle stability (a capacity of 417.4 mA h g-1 for 500 cycles at 1C with a fading rate of 0.11%) and outstanding rate performance (1014.6 mA h g-1 at 2C). This study provides a promising design solution of Ni nanoparticles embedded in porous carbon for high-performance, safe and reliable LSB.
Collapse
Affiliation(s)
- Liu Jianming
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University Datong 037009 China
| | - Zhang Jin
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University Datong 037009 China
| | - Jiang Shang
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University Datong 037009 China
| | - Zhao Jianguo
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University Datong 037009 China
- Research Institute of Shaoxing, Shanghai University Shaoxing 312000 China
| |
Collapse
|
2
|
Wang T, Chen S, Chen KJ. Metal-Organic Framework Composites and Their Derivatives as Efficient Electrodes for Energy Storage Applications: Recent Progress and Future Perspectives. CHEM REC 2023:e202300006. [PMID: 36942948 DOI: 10.1002/tcr.202300006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/26/2023] [Indexed: 03/23/2023]
Abstract
Metal-organic frameworks (MOFs) have been important electrochemical energy storage (EES) materials because of their rich species, large specific surface area, high porosity and rich active sites. Nevertheless, the poor conductivity, low mechanical and electrochemical stability of pristine MOFs have hindered their further applications. Although single component MOF derivatives have higher conductivity, self-aggregation often occurs during preparation. Composite design can overcome the shortcomings of MOFs and derivatives and create synergistic effects, resulting in improved electrochemical properties for EES. In this review, recent applications of MOF composites and derivatives as electrodes in different types of batteries and supercapacitors are critically discussed. The advantages, challenges, and future perspectives of MOF composites and derivatives have been given. This review may guide the development of high-performance MOF composites and derivatives in the field of EES.
Collapse
Affiliation(s)
- Teng Wang
- Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Ningbo, 315103, PR China
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi' an, Shaanxi, 710072, PR China
| | - Shaoqian Chen
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi' an, Shaanxi, 710072, PR China
| | - Kai-Jie Chen
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi' an, Shaanxi, 710072, PR China
| |
Collapse
|
3
|
Hu X, Huang T, Zhang G, Lin S, Chen R, Chung LH, He J. Metal-organic framework-based catalysts for lithium-sulfur batteries. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Niu J, Chen Y, Li X, Lin J, Cheng J, Hu Y. A “sandwich layer” of N-doped carbon nanotubes coated on the surface of oxidized iron-foam is used to drive peroxymonosulfate activation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
5
|
Ye Z, Li P, Wei W, Huang C, Mi L, Zhang J, Zhang J. In Situ Anchoring Anion-Rich and Multi-Cavity NiS 2 Nanoparticles on NCNTs for Advanced Magnesium-Ion Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200067. [PMID: 35466577 PMCID: PMC9218762 DOI: 10.1002/advs.202200067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Magnesium (Mg)-ion batteries with low cost and good safety characteristics has attracted a great deal of attention recently. However, the high polarity and the slow diffusion of Mg2+ in the cathode material limit the development of practical Mg cathode materials. In this paper, an anion-rich electrode material, NiS2 , and its composite with Ni-based carbon nanotubes (NiS2 /NCNTs) are explored as the cathode materials for Mg-ion batteries. These NiS2 /NCNTs with excellent Mg2+ storage property is synthesized by a simple in situ growth of NiS2 nanoparticles on NCNTs. NiS2 with both a large regular cavity structure and abundant sulfur-sulfur (SS) bonds with high electronegativity can provide a large number of active sites and unobstructed transport paths for the insertion-disinsertion of Mg2+ . With the aid of 3D NCNTs skeleton as the transport channel of the electron, the NiS2 /NCNTs exhibit a high capacity of 244.5 mAh g-1 at 50 mA g-1 and an outstanding rate performance (94.7 mAh g-1 at 1000 mA g-1 ). It achieves capacitance retention of 58% after 2000 cycles at 200 mA g-1 . Through theoretical density functional theory (DFT) calculations and a series of systematic ex situ characterizations, the magnesiation/demagnesiation mechanisms of NiS2 and NiS2 /NCNTs and are elucidated for fundamental understanding.
Collapse
Affiliation(s)
- Zisen Ye
- Henan Key Laboratory of Functional Salt MaterialsCenter for Advanced Materials ResearchZhongyuan University of TechnologyZhengzhou450007China
| | - Ping Li
- Henan Key Laboratory of Functional Salt MaterialsCenter for Advanced Materials ResearchZhongyuan University of TechnologyZhengzhou450007China
| | - Wutao Wei
- Henan Key Laboratory of Functional Salt MaterialsCenter for Advanced Materials ResearchZhongyuan University of TechnologyZhengzhou450007China
- Institute for Sustainable EnergyCollege of SciencesShanghai UniversityShanghai200444China
| | - Chao Huang
- Henan Key Laboratory of Functional Salt MaterialsCenter for Advanced Materials ResearchZhongyuan University of TechnologyZhengzhou450007China
| | - Liwei Mi
- Henan Key Laboratory of Functional Salt MaterialsCenter for Advanced Materials ResearchZhongyuan University of TechnologyZhengzhou450007China
| | - Jinglai Zhang
- Institute of Upconversion Nanoscale MaterialsCollege of Chemistry and Chemical EngineeringHenan UniversityKaifengHenan475004China
| | - Jiujun Zhang
- Institute for Sustainable EnergyCollege of SciencesShanghai UniversityShanghai200444China
| |
Collapse
|
6
|
Polyzwitterion-grafted UiO-66-PEI incorporating polyimide membrane for high efficiency CO2/CH4 separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118617] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Hu S, Hu Y, Liu X, Zhang J. Simultaneously enhancing redox kinetics and inhibiting the polysulfide shuttle effect using MOF-derived CoSe hollow sphere structures for advanced Li-S batteries. NANOSCALE 2021; 13:10849-10861. [PMID: 34114593 DOI: 10.1039/d1nr02044g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lithium-sulfur (Li-S) batteries generally suffer from a serious "shuttle effect" during the charging/discharging process, resulting in the loss of active components and sluggish redox reaction kinetics that hinder the cycle life and rate performance of the battery. To address this, CoSe/C hollow structures (CoSe/C HSs) were prepared via a simple hydrothermal strategy and used as a sulfur host for Li-S batteries. The battery with CoSe/C HSs exhibited a high initial specific discharge capacity of 1405 mA h g-1 with a coulombic efficiency of 99.8% at 0.1C. Additionally, S@CoSe/C HS cathodes with a high sulfur loading of 5.1 mg cm-2 delivered a considerable specific discharge capacity of 1256.1 mA h g-1 and maintained a high capacity of 1120 mA h g-1 after 100 cycles with a capacity decay rate of 0.11% per cycle at 0.1C. The unique raspberry-like structure of CoSe/C HSs prevents polysulfides from escaping the cathode host via both physical containment and the formation of Co-S and Se-Li chemical bonds, and it also enhances the polysulfide redox kinetics. Furthermore, the peculiar raspberry-like structure can withstand volume changes during charging/discharging to better protect the cathode.
Collapse
Affiliation(s)
- Shunyou Hu
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Yuanyuan Hu
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Xiangli Liu
- Shenzhen Engineering Laboratory of Aerospace Detection and Imaging, Department of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Jiaheng Zhang
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China. and State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
8
|
Chen S, Xia Y, Zhang B, Chen H, Chen G, Tang S. Disassembly of lignocellulose into cellulose, hemicellulose, and lignin for preparation of porous carbon materials with enhanced performances. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124956. [PMID: 33421852 DOI: 10.1016/j.jhazmat.2020.124956] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Lignocellulose is the primary component of many biomasses, including corn straw. Herein, lignocellulose in corn straw was disassembled into the individual polymers, cellulose, hemicellulose, and lignin via a mild and facile method. Subsequently, three porous carbon materials were prepared by carbonization and chemical activation of cellulose (PCCC), hemicellulose (PCHC), and lignin (PCLC). The three materials showed higher specific surface areas (2565.7, 2996.1, and 2590.3 m2 g-1) and higher porosities (1.4261, 1.5876, and 1.2406 cm3 g-1) than that of PCCS, a porous carbon material derived from raw corn straw (1993 m2 g-1 and 1.19 cm3 g-1). Of note, PCCC and PCHC exhibited higher adsorption (1025.5 and 950.1 mg g-1) of brilliant green (BG), than PCCS (876.7 mg g-1). Besides, the BG adsorption capacities of the designed materials were higher than that of most adsorbents, and 2-2.5 times higher than that of graphite oxide (416.7 mg g-1). These study results indicate that the disassembly of lignocellulosic biomass into cellulose, hemicellulose, and lignin is an effective strategy for preparing various porous carbon materials with enhanced performances.
Collapse
Affiliation(s)
- Siji Chen
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; The Key Laboratory of Straw Biology and Utilization, the Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Yuhan Xia
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; The Key Laboratory of Straw Biology and Utilization, the Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Bolun Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; The Key Laboratory of Straw Biology and Utilization, the Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Huan Chen
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; The Key Laboratory of Straw Biology and Utilization, the Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Guang Chen
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; The Key Laboratory of Straw Biology and Utilization, the Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Shanshan Tang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; The Key Laboratory of Straw Biology and Utilization, the Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
9
|
Saroha R, Ahn JH, Cho JS. A short review on dissolved lithium polysulfide catholytes for advanced lithium-sulfur batteries. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-020-0729-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|