1
|
Jiang LY, Tian FM, Chen XY, Ren XX, Feng JJ, Yao Y, Zhang L, Wang AJ. Cu 2+-regulated one-pot wet-chemical synthesis of uniform PdCu nanostars for electrocatalytic oxidation of ethylene glycol and glycerol. J Colloid Interface Sci 2023; 649:118-124. [PMID: 37343391 DOI: 10.1016/j.jcis.2023.06.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
The fabrication of effective and stable electrocatalysts is crucial for practical applications of direct alcohol fuel cells (DAFCs). In this study, bimetallic PdCu nanostars (PdCu NSs) were fabricated by a Cu2+-modulated one-pot wet-chemical method, where cetyltrimethyl ammonium bromide (CTAB) worked as a structure-regulating reagent. The morphology, compositions, crystal structures and formation mechanism of the as-prepared PdCu NSs were investigated by a series of techniques. The unique architectures created abundant active sites, which resulted in a large electrochemical active surface area (9.5 m2 g-1). The PdCu NSs showed negative shifts in the onset potentials and large forward peak current densities by contrast with those of commercial Pd black for the catalytic ethylene glycol oxidation reaction (EGOR) and glycerol oxidation reaction (GOR). It revealed that the PdCu NSs outperformed Pd black in the similar surroundings. This work provides a constructive strategy for fabrication of high-efficiency electrocatalysts for alcohol fuel cells.
Collapse
Affiliation(s)
- Lu-Yao Jiang
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Fang-Min Tian
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xiao-Yan Chen
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xin-Xin Ren
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Youqiang Yao
- Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, No. 1219, Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| | - Lu Zhang
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
2
|
Tang C, Huang J, Liu Y, He X, Chen G, He Z. Ethanol Electrooxidation on an Island-Like Nanoporous Gold/Palladium Electrocatalyst in Alkaline Media: Electrocatalytic Properties and an In Situ Surface-Enhanced Raman Spectroscopy Study. Inorg Chem 2022; 61:19388-19398. [DOI: 10.1021/acs.inorgchem.2c03195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Cuilan Tang
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, P. R. China
| | - Jinglin Huang
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, P. R. China
| | - Yansong Liu
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, P. R. China
| | - Xiaoshan He
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, P. R. China
| | - Guo Chen
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, P. R. China
| | - Zhibing He
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, P. R. China
| |
Collapse
|
3
|
Gholinejad M, Naghshbandi Z, Sansano JM. Zeolitic imidazolate frameworks-67 (ZIF-67) supported PdCu nanoparticles for enhanced catalytic activity in Sonogashira-Hagihara and nitro group reduction under mild conditions. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
4
|
Zheng X, Wang G, Zhao Y, Wu L, Wang Y, Song Y, Tian P, Wang X. Controllable morphology of Pd-loaded potassium tantalates with high catalytic performance for ethylene glycol electrooxidation. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
5
|
Zhao G, Fang C, Hu J, Zhang D. Platinum-Based Electrocatalysts for Direct Alcohol Fuel Cells: Enhanced Performances toward Alcohol Oxidation Reactions. Chempluschem 2021; 86:574-586. [PMID: 33830678 DOI: 10.1002/cplu.202000811] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/20/2021] [Indexed: 12/28/2022]
Abstract
In the past few decades, Pt-based electrocatalysts have attracted great interests due to their high catalytic performances toward the direct alcohol fuel cell (DAFC). However, the high cost, poor stability, and the scarcity of Pt have markedly hindered their large-scale utilization in commerce. Therefore, enhancing the activity and durability of Pt-based electrocatalysts, reducing the Pt amount and thus the cost of DAFC have become the keys for their practical applications. In this minireview, we summarized some basic concepts to evaluate the catalytic performances in electrocatalytic alcohol oxidation reaction (AOR) including electrochemical active surface area, activity and stability, the effective approaches for boosting the catalytic AOR performance involving size decrease, structure and morphology modulation, composition effect, catalyst supports, and assistance under other external energies. Furthermore, we also presented the remaining challenges of the Pt-based electrocatalysts to achieve the fabrication of a real DAFC.
Collapse
Affiliation(s)
- Guili Zhao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Caihong Fang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
- Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, 241000, P. R. China
| | - Jinwu Hu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Deliang Zhang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| |
Collapse
|
6
|
Fang C, Jiang X, Hu J, Song J, Sun N, Zhang D, Kuai L. Ru Nanoworms Loaded TiO 2 for Their Catalytic Performances toward CO Oxidation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5079-5087. [PMID: 33470784 DOI: 10.1021/acsami.0c20181] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ruthenium nanocrystals with small size and special morphology are of great interest in various catalytic reactions due to their high activities. However, it is still a great challenge to downsize these nanocatalysts to a sub-nano scale (<2 nm). Herein, we reported a synthesis of ultrasmall size and uniform Ru nanoparticles through a rapid one-pot method. The prepared Ru nanocrystal shows a wormlike shape, in which the diameter is as thin as 1.6 ± 0.3 nm and the length is 13.6 ± 4.4 nm. These Ru nanoworms (NWs) are quite steady during the synthetic process even though the reaction time was further prolonged. We also examined their catalytic activity toward CO oxidation by loading Ru NWs on TiO2 to form Ru NWs/TiO2 catalysts. These catalysts exhibit a high activity of 100% CO conversion at 150 °C, which is much lower than the normal Ru NPs/TiO2 nanostructures. Based on our detailed investigations, we proposed that the small size, special morphology, and TiO2 support are the keys for their significantly improved catalytic activity. We believed that these reasonable discoveries provide a methodology and opportunity to get highly active catalysts for CO oxidation by a detailed increase in their active sites.
Collapse
Affiliation(s)
- Caihong Fang
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Wuhu 241000, China
| | - Xiaomin Jiang
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Wuhu 241000, China
| | - Jinwu Hu
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Wuhu 241000, China
| | - Jiaojiao Song
- School of Biological and Chemical Engineering, The Key Laboratory of Renewable Energy Materials & Substance, Catalytic Conversion of Anhui Higher Education Institutes, Anhui Polytechnic University, Wuhu 241000, China
| | - Na Sun
- School of Biological and Chemical Engineering, The Key Laboratory of Renewable Energy Materials & Substance, Catalytic Conversion of Anhui Higher Education Institutes, Anhui Polytechnic University, Wuhu 241000, China
| | - Deliang Zhang
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Wuhu 241000, China
| | - Long Kuai
- School of Biological and Chemical Engineering, The Key Laboratory of Renewable Energy Materials & Substance, Catalytic Conversion of Anhui Higher Education Institutes, Anhui Polytechnic University, Wuhu 241000, China
| |
Collapse
|
7
|
Messa Moreira TF, Neto SA, Lemoine C, Kokoh KB, Morais C, Napporn TW, Olivi P. Rhodium effects on Pt anode materials in a direct alkaline ethanol fuel cell. RSC Adv 2020; 10:35310-35317. [PMID: 35515668 PMCID: PMC9056937 DOI: 10.1039/d0ra06570f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/17/2020] [Indexed: 12/04/2022] Open
Abstract
The development of efficient catalysts for ethanol oxidation in alkaline medium requires a synthetic approach that may prevent the surfactant molecules from being adsorbed at the catalytic sites and decreasing the electrochemical performance of the final direct ethanol fuel cell. Toward this goal, the recently reported surfactant-less Bromide Anion Exchange (BAE) method, appears as a promising route to conveniently aim at preparing PtRh alloys dispersed on carbon substrates. The catalysts prepared herein by the BAE method were characterized physicochemically to obtain structural information on the PtRh/C nanomaterials, their morphology (size and shape), and their chemical and surface composition. Electrochemical behavior and properties of these electrodes were then investigated in a half-cell before the implementation of a direct ethanol fuel cell (DEFC) in a home-made anion exchange membrane Teflon cell. The analysis of the electrolytic solution in the anodic compartment by chromatography revealed that acetate was the major reaction product and the carbonate amount increased with the Rh content in the bimetallic composition. With 2.8–3.6 nm particle sizes, the Pt50Rh50/C catalyst exhibited the highest activity towards the ethanol electrooxidation. The development of efficient catalysts for ethanol oxidation in alkaline medium requires an approach that avoids surfactant molecules from being adsorbed at active sites and decreasing the electrochemical performance of the direct ethanol fuel cell.![]()
Collapse
Affiliation(s)
- Thamyres Fernandes Messa Moreira
- Laboratório de Eletroquímica e Eletrocatálise Ambiental, Departamento de Química da Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo Av. Bandeirantes, 3900 14040-901 Ribeirão Preto SP Brazil .,Université de Poitiers, IC2MP UMR 7285 CNRS 4, Rue Michel Brunet, B27, TSA 51106 86073 Poitiers Cedex 09 France
| | - Sidney Aquino Neto
- Laboratório de Eletroquímica e Eletrocatálise Ambiental, Departamento de Química da Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo Av. Bandeirantes, 3900 14040-901 Ribeirão Preto SP Brazil
| | - Charly Lemoine
- Université de Poitiers, IC2MP UMR 7285 CNRS 4, Rue Michel Brunet, B27, TSA 51106 86073 Poitiers Cedex 09 France
| | - Kouakou Boniface Kokoh
- Université de Poitiers, IC2MP UMR 7285 CNRS 4, Rue Michel Brunet, B27, TSA 51106 86073 Poitiers Cedex 09 France
| | - Cláudia Morais
- Université de Poitiers, IC2MP UMR 7285 CNRS 4, Rue Michel Brunet, B27, TSA 51106 86073 Poitiers Cedex 09 France
| | - Teko Wilhelmin Napporn
- Université de Poitiers, IC2MP UMR 7285 CNRS 4, Rue Michel Brunet, B27, TSA 51106 86073 Poitiers Cedex 09 France
| | - Paulo Olivi
- Laboratório de Eletroquímica e Eletrocatálise Ambiental, Departamento de Química da Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo Av. Bandeirantes, 3900 14040-901 Ribeirão Preto SP Brazil
| |
Collapse
|