1
|
Sosunovych B, Vashchenko BV, Andriashvili VA, Grygorenko OO. Bypassing Sulfonyl Halides: Synthesis of Sulfonamides from Other Sulfur-Containing Building Blocks. CHEM REC 2024; 24:e202300258. [PMID: 37753806 DOI: 10.1002/tcr.202300258] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/11/2023] [Indexed: 09/28/2023]
Abstract
This review disclosed synthetic approaches to sulfonyl amides from non-sulfonyl halogenated precursors. Known methods were systematized into groups and subgroups according to the type of starting organosulfur compound. Thiols, disulfides, and sulfonamides form a group of S(II)-containing precursors, which are used in oxidative amination reactions. An important and versatile group for oxidative amination is represented with S(IV)-containing compounds, i. e., sufinates, sulfinamides, DMSO, N-sulfinyl-O-(tert-butyl)hydroxylamine, etc. A series of S(VI)-containing precursors for amination reactions (except sulfonyl halides) include sulfonic acids, sulfonyl azides, thiosulfonates, and sulfones. All approaches are represented with the most prominent examples of the resulting sulfonamides, which could be obtained in high yields mostly via short reaction sequences. Promising electrochemical methods for the preparation of sulfonamides from thiols, disulfides, sulfonamides, sulfinic acid derivatives, and dimethyl sulfoxide under mild and green conditions are also highlighted.
Collapse
Affiliation(s)
| | - Bohdan V Vashchenko
- Enamine Ltd, Winston Churchill 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Vladyslav A Andriashvili
- Enamine Ltd, Winston Churchill 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd, Winston Churchill 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| |
Collapse
|
2
|
Wang P, Li S, Wen H, Lei Y, Huang S, Wang Z, Su J, Guan W, Lei J. Thiosuccinimide enabled S-N bond formation to access N-sulfenylated sulfonamide derivatives with synthetic diversity. Org Biomol Chem 2024; 22:990-997. [PMID: 38180390 DOI: 10.1039/d3ob01848b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A thiosuccinimide enabled S-N cross-coupling strategy has been established for the intermolecular N-sulfenylation of clinically approved sulfa drugs under additive-free conditions. This approach features simple operation, high chemoselectivity for sulfenylating the phenylamino group of sulfonamides, wide substrate scope, and easy scale production, affording N-sulfenylated products in moderate to excellent yields (up to 90%). In addition, we also found that this transformation can be realized in a one-pot manner by employing readily available thiols as starting materials, and the obtained sulfonamide derivatives are capable of various late-stage functionalizations, including oxidation, arylation, benzylation, and methylation.
Collapse
Affiliation(s)
- Peifeng Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Shan Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Huiling Wen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Yin Lei
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Shujuan Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Zixiu Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Jialong Su
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Wenxiang Guan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Jian Lei
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| |
Collapse
|
3
|
Mahmoodzadeh F, Navidjouy N, Alizadeh S, Rahimnejad M. Investigation of microbial fuel cell performance based on the nickel thin film modified electrodes. Sci Rep 2023; 13:20755. [PMID: 38007521 PMCID: PMC10676379 DOI: 10.1038/s41598-023-48290-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/24/2023] [Indexed: 11/27/2023] Open
Abstract
Microbial fuel cells (MFCs) are a self-sustaining and environmentally friendly system for the simultaneous was tewater treatment and bioelectricity generation. The type and material of the electrode are critical factors that can influence the efficiency of this treatment process. In this study, graphite plates and carbon felt were modified through the electrodeposition of nickel followed by the formation of a biofilm, resulting in conductive bio-anode thin film electrodes with enhanced power generation capacity. The structural and morphological properties of the electrode surfaces were characterized using X-ray diffraction, energy-dispersive X-ray spectroscopy, elemental mapping, and field-emission scanning electron microscopy techniques. Maximum voltage, current density, and power generation were investigated using a dual-chamber MFC equipped with a Nafion 117 membrane and bio-nickel-doped carbon felt (bio-Ni@CF) and bio-nickel-doped graphite plate (bio-Ni@GP) electrodes under constant temperature conditions. The polarization and power curves obtained using different anode electrodes revealed that the maximum voltage, power and current density achieved with the bio-Ni@CF electrode were 468.0 mV, 130.72 mW/m2 and 760.0 mA/m2 respectively. Moreover, the modified electrodes demonstrated appropriate stability and resistance during successful runs. These results suggest that nickel-doped carbon-based electrodes can serve as suitable and stable supported catalysts and conductors for improving efficiency and increasing power generation in MFCs.
Collapse
Affiliation(s)
- Fatemeh Mahmoodzadeh
- Department of Environmental Health Engineering, Urmia University of Medical Sciences, Urmia, Iran
| | - Nahid Navidjouy
- Department of Environmental Health Engineering, Urmia University of Medical Sciences, Urmia, Iran.
| | - Saber Alizadeh
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 65174-38683, Iran
| | - Mostafa Rahimnejad
- Department of Chemical Engineering, Biofuel and Renewable Energy Research Center, Babol Noshirvani University of Technology, Babol, Iran
| |
Collapse
|
4
|
Liu G, Chen Y, Chen Y, Shi Y, Zhang M, Shen G, Qi P, Li J, Ma D, Yu F, Huang X. Indirect Electrocatalysis S─N/S─S Bond Construction by Robust Polyoxometalate Based Foams. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304716. [PMID: 37392073 DOI: 10.1002/adma.202304716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/02/2023]
Abstract
Indirect electrocatalytic conversion of cheap organic raw materials via the activation of S─H and N─H bonds into the value-added S─N/S─S bonds chemicals for industrial rubber production is a promising strategy to realize the atomic economic reaction, during which the kinetic inhibition that is associated with the electron transfer at the electrode/electrolyte interface in traditional direct electrocatalysis can be eliminated to achieve higher performance. In this work, a series of di-copper-substituted phosphotungstatebased foams (PW10 Cu2 @CMC) are fabricated with tunable loadings (17 to 44 wt%), which can be successfully applied in indirect electrocatalytic syntheses of sulfenamides and disulfides. Specifically, the optimal PW10 Cu2 @CMC (44 wt%) exhibits excellent electrocatalytic performance for the construction of S─N/S─S bonds (yields up to 99%) coupling with the efficient production of H2 (≈50 µmol g-1 h-1 ). Remarkably, it enables the scale-up production (≈14.4 g in a batch experiment) and the obtained products can serve as rubber vulcanization accelerators with superior properties to traditional industrial rubber additives in real industrial processes. This powerful catalysis system that can simultaneously produce rubber vulcanization accelerator and H2 may inaugurate a new electrocatalytic avenue to explore polyoxometalate-based foam catalysts in electrocatalysis field.
Collapse
Affiliation(s)
- Gang Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, P. R. China
| | - Yifa Chen
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Lab. of ETESPG(GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Yulu Chen
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Lab. of ETESPG(GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Yanqi Shi
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, P. R. China
| | - Meiyu Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, P. R. China
| | - Guodong Shen
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, P. R. China
| | - Pengfei Qi
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, P. R. China
| | - Jikun Li
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, Shandong, 271021, P. R. China
| | - Delong Ma
- National Rubber Additive Engineering Technology Center, Liaocheng, Shandong, 252059, P. R. China
| | - Fei Yu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xianqiang Huang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, P. R. China
| |
Collapse
|
5
|
Masoudi-Khoram M, Zargarian M, Nematollahi D, Zolfigol MA, Sepehrmansourie H, Khazalpour S. Convergent paired electrosynthesis of different types of bis-β-diketone derivatives based on the knoevenagel condensation reaction under green conditions. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Urinary bio-monitoring of amphetamine derivatives by needle trap device packed with the zirconium-based metal-organic framework. Sci Rep 2022; 12:13702. [PMID: 35953701 PMCID: PMC9372183 DOI: 10.1038/s41598-022-17861-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/02/2022] [Indexed: 12/02/2022] Open
Abstract
In this research, zirconium-based metal–organic framework was utilized as a novel and efficient porous adsorbent for headspace extraction of Amphetamine, Methamphetamine, and Fenfluramine from the urine samples by a needle trap device (NTD). The Zr-UiO-66-PDC was electrosynthesized at the green conditions and characterized by various analyses such as FT-IR, XRD, FE-SEM, EDS, and elemental mapping techniques. Then, the effective parameters on the NTD efficiency such as salt content, pH, extraction/desorption temperature and time were evaluated and optimized by response surface methodology. The optimal extraction of amphetamine compounds was accomplished in 50 min at 70 ºC at the situation with NaCl content of 27% and pH: 11.90. The limit of detection, and limit of quantification factors were determined to be 0.06–0.09 and 0.5–0.8 ng mL−1, respectively. Furthermore, the precision and accuracy (intra- and inter-day) of the employed procedure in the term of relative standard deviation (RSD) were calculated in the range of 8.0–9.0% and 6.8–9.8%, respectively. Also, the recovery percent of the extracted analytes were concluded in the range of 95.0–97.0% after 10 days from the sampling and storage at 4 °C. Finally, the proposed procedure was involved in the analysis of amphetamine compounds in the real urine samples. These results were proved the proposed Zr-UiO-66-PDC@HS-NTD technique coupled with GC-FID can be used as an eco-friendly, fast-response, sensitive, and efficient drug test procedure for trace analysis of the amphetamine compounds in urine samples.
Collapse
|
7
|
Iakovenko RO, Chrenko D, Kristek J, Desmedt E, Zálešák F, De Vleeschouwer F, Pospíšil J. Heteroaryl sulfonamide synthesis: scope and limitations. Org Biomol Chem 2022; 20:3154-3159. [PMID: 35343994 DOI: 10.1039/d2ob00345g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Heteroaryl sulfonamides are important structural motifs in the medicinal and agrochemical industries. However, their synthesis often relies on the use of heteroaryl sulfonyl chlorides, which are unstable and toxic reagents. Herein, we report a protocol that allows direct oxidative coupling of heteroaryl thiols and primary amines, readily available and inexpensive commodity chemicals. The transformation proceeds under mild reaction conditions and yields the desired N-alkylated sulfonamides in good yields. N-alkyl heteroaryl sulfonamides can be further transformed using a microwave-promoted Fukuyama-Mitsunobu reaction to N,N-dialkyl heteroaryl sulfonamides. The developed protocols thus enable the preparation of previously difficult to prepare sulfonamides (toxic reagents, harsh conditions, and low yields) under mild conditions.
Collapse
Affiliation(s)
- Roman O Iakovenko
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacky University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic.
| | - Daniel Chrenko
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacky University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic. .,Department of Chemical Biology, Faculty of Science, Palacky University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Jozef Kristek
- Department of Organic Chemistry, Faculty of Science, Palacky University, tř. 17. listopadu 1192/12, Olomouc CZ-771 46, Czech Republic
| | - Eline Desmedt
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - František Zálešák
- Department of Organic Chemistry, Faculty of Science, Palacky University, tř. 17. listopadu 1192/12, Olomouc CZ-771 46, Czech Republic
| | - Freija De Vleeschouwer
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Jiří Pospíšil
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacky University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic. .,Department of Chemical Biology, Faculty of Science, Palacky University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Palacky University, tř. 17. listopadu 1192/12, Olomouc CZ-771 46, Czech Republic
| |
Collapse
|
8
|
A green protocol for the electrochemical synthesis of a fluorescent dye with antibacterial activity from imipramine oxidation. Sci Rep 2022; 12:4921. [PMID: 35318352 PMCID: PMC8941072 DOI: 10.1038/s41598-022-08770-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/02/2022] [Indexed: 12/31/2022] Open
Abstract
Electrochemical oxidation of imipramine (IMP) has been studied in aqueous solutions by cyclic voltammetry and controlled-potential coulometry techniques. Our voltammetric results show a complex behavior for oxidation of IMP at different pH values. In this study, we focused our attention on the electrochemical oxidation of IMP at a pH of about 5. Under these conditions, our results show that the oxidation of IMP leads to the formation of a unique dimer of IMP (DIMP). The structure of synthesized dimer is fully characterized by UV-visible, FTIR, 1H NMR, 13C NMR and mass spectrometry techniques. It seems that the first step in the oxidation of IMP is the cleavage of the alkyl group (formation of IMPH). After this, a domino oxidation-hydroxylation-dimerization-oxidation reaction, converts IMPH to (E)-10,10',11,11'-tetrahydro-[2,2'-bidibenzo[b,f]azepinylidene]-1,1'(5H,5'H)-dione (DIMP). The synthesis of DIMP is performed in an aqueous solution under mild conditions, without the need for any catalyst or oxidant. Based on our electrochemical findings as well as the identification of the final product, a possible reaction mechanism for IMP oxidation has been proposed. Conjugated double bonds in the DIMP structure cause the compound to become colored with sufficient fluorescence activity (excitation wave-length 535 nm and emission wave-length 625 nm). Moreover, DIMP has been evaluated for in vitro antibacterial. The antibacterial tests indicated that DIMP showed good antibacterial performance against all examined gram-positive and gram-negative bacteria (Staphylococcus aureus, Bacillus cereus, Escherichia coli and Shigella sonnei).
Collapse
|
9
|
Convergent paired electrochemical synthesis of symmetric dispiro and spiropyrimidine derivatives based on reduction of para-nitrophenol. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Wu Y, Peng K, Hu Z, Fan Y, Shi Z, Hao E, Dong Z. Iodine‐Mediated Cross‐Dehydrogenative Coupling of Heterocyclic Thiols with Amines: An Easy and Practical Formation of S−N Bond. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yue‐Xiao Wu
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 China
| | - Kang Peng
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 China
| | - Zhi‐Chao Hu
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 China
| | - Yong‐Hao Fan
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 China
| | - Zhen Shi
- Hubei Key Laboratory of Biologic Resources Protection and Utilization Hubei Minzu University Enshi 445000 China
| | - Er‐Jun Hao
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Zhi‐Bing Dong
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 China
- Hubei Key Laboratory of Biologic Resources Protection and Utilization Hubei Minzu University Enshi 445000 China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
- Key Laboratory of Green Chemical Process, Ministry of Education Wuhan Institute of Technology Wuhan 430205 China
- Hubei key Laboratory of Novel Reactor and Green Chemistry Technology Wuhan Institute of Technology Wuhan 430205 China
| |
Collapse
|
11
|
Bheemanaboina RRY, Wang J, Hu YY, Meng JP, Guan Z, Zhou CH. A facile reaction to access novel structural sulfonyl-hybridized imidazolyl ethanols as potential DNA-targeting antibacterial agents. Bioorg Med Chem Lett 2021; 47:128198. [PMID: 34119615 DOI: 10.1016/j.bmcl.2021.128198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022]
Abstract
A novel type of sulfonyl-hybridized imidazolyl ethanols as potential DNA-targeting antibacterial agents was constructed via the unique ring-opened reaction of oxiranes by imidazoles for the first time. Some developed target hybrids showed potential antimicrobial potency against the tested microbes. Especially, imidazole derivative 5f could strongly suppressed the growth of MRSA (MIC = 4 μg/mL), which was 2-fold and 16-fold more potent than the positive control sulfathiazole and norfloxacin. This compound exhibited quite low propensity to induce bacterial resistance. Antibacterial mechanism exploration indicated that compound 5f could embed in MRSA DNA to form steady 5f-DNA complex, which possibly hinder DNA replication to exert antimicrobial behavior. Molecular docking showed that molecule 5f could bind with dihydrofolate synthetase through hydrogen bonds. These results implied that imidazole derivative 5f could be served as a promising molecule for the exploration of novel antibacterial candidates.
Collapse
Affiliation(s)
- Rammohan R Yadav Bheemanaboina
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Juan Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yuan-Yuan Hu
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jiang-Ping Meng
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| | - Zhi Guan
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
12
|
Lanfranco A, Moro R, Azzi E, Deagostino A, Renzi P. Unconventional approaches for the introduction of sulfur-based functional groups. Org Biomol Chem 2021; 19:6926-6957. [PMID: 34333579 DOI: 10.1039/d1ob01091c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Organosulfur compounds have a pivotal role in the functionalities of many natural products, pharmaceuticals and organic materials. For these reasons, the search for new methodologies for the formation of carbon-sulfur bonds has been the object of intensive work for organic chemists. However, the proposed strategies suffer from various drawbacks, such as volatility, toxicity, and instability of the sulfur sources or the use of VOC solvents. In this review, we summarise the recent protocols which have the goal of obtaining sulfones, thioethers, thiazines, thiazepines and sulfonamides in an unconventional and/or sustainable way. The use of starting materials less invasive and toxic with respect to the traditional reagents, alternative solvents such as water, ionic liquids or deep eutectic solvents, the exploitation of ultrasound and electrochemistry, increasing the efficiency of the process, are reported. Moreover, representative reaction mechanisms are also discussed.
Collapse
Affiliation(s)
- Alberto Lanfranco
- Department of Chemistry, University of Torino, Via Giuria, 7, Torino, 10125, Italy.
| | | | | | | | | |
Collapse
|
13
|
Souri Z, Alizadeh S, Nematollahi D, Mazloum-Ardakani M, Karami A. A green and template-free electropolymerization of imipramine. The decoration of sponge-like polymer film with gold nanoparticles. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Chen Z, Duan H, Gai Y, Xie W, Deng W, Jiang F. Separation of the host-guest system for ferrocene derivatives in octahedral nanocages by electrochemical ionization. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Sheena Mary Y, Shyma Mary Y, Krátký M, Vinsova J, Baraldi C, Gamberini MC. DFT, molecular docking and SERS (concentration and solvent dependant) investigations of a methylisoxazole derivative with potential antimicrobial activity. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
He M, Cheng S, Pan Y, Tang H, Pan Y. Electrochemically Mediated S—N Bond Formation: Synthesis of Sulfenamides. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202101017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Jamshidi M, Amani A, Khazalpour S, Torabi S, Nematollahi D. Progress and perspectives of electrochemical insights for C–H and N–H sulfonylation. NEW J CHEM 2021. [DOI: 10.1039/d1nj03574f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A comprehensive electrosulfonylation study has been carried out via cathodic and anodic approaches for the production of organosulfone and sulfonamide derivatives.
Collapse
Affiliation(s)
- Mahdi Jamshidi
- Faculty of Chemistry, Bu-Ali-Sina University, Hamedan 65174, Iran
| | - Ameneh Amani
- Nahavand Higher Education Complex, Bu-Ali Sina University, Hamedan, Iran
| | | | - Sara Torabi
- Faculty of Chemistry, Bu-Ali-Sina University, Hamedan 65174, Iran
| | | |
Collapse
|
18
|
Goljani H, Tavakkoli Z, Sadatnabi A, Masoudi-Khoram M, Nematollahi D. A new electrochemical strategy for the synthesis of a new type of sulfonamide derivatives. Sci Rep 2020; 10:17904. [PMID: 33087774 PMCID: PMC7577992 DOI: 10.1038/s41598-020-74733-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/06/2020] [Indexed: 01/08/2023] Open
Abstract
This study is the first report of electrochemical generation of hydroxyimino-cyclohexa-dien-ylidene haloniums and their application in the synthesis of new halo-N-hydroxysulfonamide derivatives. These compounds were obtained in a one-pot process based on the reaction of halonium acceptors with arylsulfinic acids. The method is easy to carry out, as it is performed using the carbon electrodes in a simple undivided cell. The protocol has a broad substrate scope with a tolerance for a variety of functional groups. The proposed mechanism is a ping-pong type reaction mechanism, which in its first stage the halonitroarene is reduced at the cathode to related hydroxylamine and in the second stage the cathodically generated hydroxylamine by oxidation at the anode and participating in disproportionation reaction is converted to the halonium acceptor.
Collapse
Affiliation(s)
- Hamed Goljani
- Faculty of Chemistry, Bu-Ali-Sina University, 65174-38683, Hamedan, Iran
| | - Zahra Tavakkoli
- Faculty of Chemistry, Bu-Ali-Sina University, 65174-38683, Hamedan, Iran
| | - Ali Sadatnabi
- Faculty of Chemistry, Bu-Ali-Sina University, 65174-38683, Hamedan, Iran
| | | | - Davood Nematollahi
- Faculty of Chemistry, Bu-Ali-Sina University, 65174-38683, Hamedan, Iran.
| |
Collapse
|
19
|
Li G, Kong X, Liang Q, Lin L, Yu K, Xu B, Chen Q. Metal‐Free Electrochemical Coupling of Vinyl Azides: Synthesis of Phenanthridines and
β
‐Ketosulfones. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001059] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Guodong Li
- Key Lab of Science and Technology of Eco‐Textile Ministry of Education College of Chemistry, Chemical Engineering and Biotechnology Donghua University 201620 Shanghai China
| | - Xianqiang Kong
- Key Lab of Science and Technology of Eco‐Textile Ministry of Education College of Chemistry, Chemical Engineering and Biotechnology Donghua University 201620 Shanghai China
- School of Chemical Engineering and Materials Changzhou Institute of Technology No. 666 Liaohe Road 213032 Changzhou China
| | - Qi Liang
- Key Lab of Science and Technology of Eco‐Textile Ministry of Education College of Chemistry, Chemical Engineering and Biotechnology Donghua University 201620 Shanghai China
| | - Long Lin
- Key Lab of Science and Technology of Eco‐Textile Ministry of Education College of Chemistry, Chemical Engineering and Biotechnology Donghua University 201620 Shanghai China
| | - Ke Yu
- Key Lab of Science and Technology of Eco‐Textile Ministry of Education College of Chemistry, Chemical Engineering and Biotechnology Donghua University 201620 Shanghai China
| | - Bo Xu
- Key Lab of Science and Technology of Eco‐Textile Ministry of Education College of Chemistry, Chemical Engineering and Biotechnology Donghua University 201620 Shanghai China
| | - Qianjin Chen
- Key Lab of Science and Technology of Eco‐Textile Ministry of Education College of Chemistry, Chemical Engineering and Biotechnology Donghua University 201620 Shanghai China
| |
Collapse
|