1
|
Tang Z, Wang Y, Qian W, Piao Z, Wang H, Zhang Y. Two-way rushing travel: Cathodic-anodic coupling of Bi 2O 3-SnO@CuO nanowires, a bifunctional catalyst with excellent CO 2RR and MOR performance for the efficient production of formate. J Colloid Interface Sci 2023; 652:1653-1664. [PMID: 37666197 DOI: 10.1016/j.jcis.2023.08.196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/03/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
Electrocatalytic carbon dioxide reduction reaction (CO2RR) generates high value-added products and simultaneously reduces excess atmospheric CO2 concentrations, is regarded as a potential approach to achieve carbon neutrality. However, the kinetic process of the anode oxygen evolution reaction (OER) is slow, resulting in a poor electrochemical efficiency of CO2RR. It is a breakthrough to replace OER with methanol oxidation reaction (MOR), which has more advantageous reaction kinetics. Herein, this work proposed a bifunctional catalyst Bi2O3-SnO modified CuO nanowires (Bi2O3-SnO@CuO NWs) with excellent CO2RR and MOR performance. For CO2RR, Bi2O3-SnO@CuO NWs achieved more than 90% formate selectivity at wide potential windows from -0.88 to -1.08 V (vs. reversible hydrogen electrode (RHE)), peaking at 96.6%. Meanwhile, anodic Bi2O3-SnO@CuO NWs achieved 100 mA cm-2 at a low potential of 1.53 V (vs. RHE), possessing nearly 100% formate selectivity ranging from 1.6 to 1.8 V (vs. RHE). Impressively, by coupling cathodic CO2RR and anodic MOR, the integrated electrolytic cell realized co-production of formate (cathode: 94.7% and anode: 97.5%), minimizing the energy input by approximately 69%, compared with CO2RR. This work provided a meaningful perspective for the design of bifunctional catalysts and coupling reaction systems in CO2RR.
Collapse
Affiliation(s)
- Zheng Tang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China
| | - Yu Wang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China
| | - Wenxuan Qian
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China
| | - Zhe Piao
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China
| | - Honggui Wang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China.
| | - Ya Zhang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China.
| |
Collapse
|
2
|
Lu Y, Liu C, Mei C, Sun J, Lee J, Wu Q, Hubbe MA, Li MC. Recent advances in metal organic framework and cellulose nanomaterial composites. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214496] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
3
|
Hou C, Fu L, Wang Y, Chen W, Chen F, Zhang S, Wang J. Co-MOF-74 based Co 3O 4/cellulose derivative membrane as dual-functional catalyst for colorimetric detection and degradation of phenol. Carbohydr Polym 2021; 273:118548. [PMID: 34560960 DOI: 10.1016/j.carbpol.2021.118548] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/24/2021] [Accepted: 08/08/2021] [Indexed: 11/18/2022]
Abstract
Smart nanomaterials that can simultaneously detect and eliminate contaminants in water environment are significant for health protection. To achieve such goal, Co-MOF-74 was in-situ assembled on regenerated cellulose membranes followed by calcination process, thus achieving dual-functional Co3O4/cellulose derivative membrane (Co3O4/CDM) catalyst. The Co3O4 morphology was readily controlled by further recrystallization of the deposited MOF precursor. Combining the high enrichment ability of cellulose membrane and outstanding peroxidase-active of Co3O4, the fast color reaction for phenol was accomplished within 10 min by Co3O4/CDM with the assistance of H2O2 and 4-aminoantipyrine (4-AAP). Moreover, the Co3O4/CDM also portrayed an excellent degradation property for phenol elimination via sulfate radical-advanced oxidation processes (SR-AOPs). The degradation efficiency of phenol reached 93% in 20 min, and the possible mineralization mechanism was proposed based on the XPS and LC-MS analysis. Thus, Co-MOF-74 derived Co3O4/CDM shows excellent properties in aiding the colorimetric detection and degradation of phenol in aqueous solutions.
Collapse
Affiliation(s)
- Chen Hou
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China.
| | - Linhui Fu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| | - Yang Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China.
| | - Wenqiang Chen
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| | - Fang Chen
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| | - Sufeng Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China.
| | - Jianzhi Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
4
|
Liu X, Xiao Y, Zhang Z, You Z, Li J, Ma D, Li B. Recent Progress in
Metal‐Organic
Frameworks@Cellulose Hybrids and Their Applications. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Xiongli Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Yun Xiao
- General English Department, College of Foreign Languages Nankai University Tianjin 300071 China
| | - Zhiyuan Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Zifeng You
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Jinli Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Dingxuan Ma
- College of Chemistry and Molecular Engineering, Laboratory of Eco‐chemical Engineering, Ministry of Education Qingdao University of Science and Technology Qingdao 266042 China
| | - Baiyan Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| |
Collapse
|
5
|
Jaleh B, Nasrollahzadeh M, Nasri A, Eslamipanah M, Moradi A, Nezafat Z. Biopolymer-derived (nano)catalysts for hydrogen evolution via hydrolysis of hydrides and electrochemical and photocatalytic techniques: A review. Int J Biol Macromol 2021; 182:1056-1090. [PMID: 33872617 DOI: 10.1016/j.ijbiomac.2021.04.087] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/27/2021] [Accepted: 04/14/2021] [Indexed: 01/20/2023]
Abstract
Over the course of a few decades, the concern of environmental damages of fossil fuels, an increase in CO2 emission and a decrease of hydrogen have been growing more and more. Accordingly, hydrogen production is a crucial issue nowadays. Different polymers are applied to attain the purpose. Among all polymers, biodegradables polymers are the best choices to develop the main aim. Polysaccharides and proteins are biodegradable polymers with unique places and advantages with regards to their ecofriendly properties. There are different techniques to apply and achieve the foremost purpose. It is worthwhile to mention that green and facile methods are always attracting attention in different aspects and fields. The three non-polluting and economical techniques, that is, electrochemical hydrogen evolution reaction (HER), photocatalytic technique, and hydrolysis of hydrides, are reviewed in this paper. This review helps researchers, who are environment supporters, to evaluate and choose the most ecological biopolymers and processes in their work.
Collapse
Affiliation(s)
- Babak Jaleh
- Department of Physics, Faculty of Science, Bu-Ali Sina University, 65174, Hamedan, Iran.
| | | | - Atefeh Nasri
- Department of Physics, Faculty of Science, Bu-Ali Sina University, 65174, Hamedan, Iran
| | - Mahtab Eslamipanah
- Department of Physics, Faculty of Science, Bu-Ali Sina University, 65174, Hamedan, Iran
| | - Aida Moradi
- Department of Physics, Faculty of Science, Bu-Ali Sina University, 65174, Hamedan, Iran
| | - Zahra Nezafat
- Department of Chemistry, Faculty of Science, University of Qom, Qom 3716146611, Iran
| |
Collapse
|