1
|
Qin S, Liang J, Luo S, Feng J, Xu P, Liu K, Li J. Rational designing NiVO 3@CoNi-MOF heterostructures on activated carbon cloth for high-performance asymmetric supercapacitors and oxygen evolution reaction. J Colloid Interface Sci 2024; 673:321-332. [PMID: 38878367 DOI: 10.1016/j.jcis.2024.06.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 07/26/2024]
Abstract
Binder-free self-supported carbon cloth electrode provides novel strategies for the preparation of MOFs, effectively improving the conductivity and promoting charge transfer. Combining MOFs with vanadate to form a unique heterogeneous structure provides a large specific surface area and more active sites, further enhancing the kinetics of MOFs. Herein, a self-supported carbon cloth electrode is prepared by in-situ growth of CoNi-MOFs on activated carbon cloth (AC) and coating with NiVO3. The heterostructure increases the specific surface area and exposes more active sites to promote the adsorption and diffusion of ions, thus enhancing the kinetic activity and optimizing charge storage behavior. As expected, the NiVO3@CoNi-MOF/AC exhibits a specific capacitance of up to 19.20 F/cm2 at 1 mA/cm2. The asymmetric supercapacitors (ASCs) assembled by NiVO3@CoNi-MOF/AC and annealed activated carbon cloth achieve an energy density of 1.27 mWh/cm2 at a power density of 4 mW/cm2 and have a capacitance retention of 96.43 % after 10,000 cycles. In addition, the NiVO3@CoNi-MOF/AC as electrocatalyst has an overpotential of 370 mV at 10 mA/cm2 and a Tafel slope of 208 mV dec-1, demonstrating remarkable electrocatalytic oxygen evolution reaction performance. These unique heterostructures endow the electrode with more electrochemical selectivity and provide new key insights for designing multifunctional materials.
Collapse
Affiliation(s)
- Shumin Qin
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Jianying Liang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Shuang Luo
- Department of Materials Science & Engineering, City University of Hong Kong, Hong Kong, China
| | - Jinglv Feng
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Pengfei Xu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Kang Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Jien Li
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
2
|
Shang W, Wang H, Yu W, He Y, Ma Y, Wu Z, Tan P. Transforming the Electrochemical Behaviors of Cobalt Oxide from "Supercapacitator" to "Battery" by Atomic-Level Structure Engineering for Inspiring the Advance of Co-Based Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300647. [PMID: 36919635 DOI: 10.1002/smll.202300647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/18/2023] [Indexed: 06/15/2023]
Abstract
Cobalt-based electrodes receive emerging attention for their high theoretical capacity and rich valence variation ability, but state-of-the-art cobalt-based electrodes present performance far below the theoretical value. Herein, the in-depth reaction mechanisms in the alkaline electrolyte are challenged and proven to be prone to the surface-redox pseudocapacitor behavior due to the low adsorption energy to OH. Using the atomic-level structure engineering strategy after substitution metal searching, the adsorption energy is effectively enhanced, and the peak of CoOOH can be observed from in situ characterization for the first time, leading to the successful transition of charge storage behavior from "supercapacitor" to "battery". When used in a Zn-Co battery as a proof of concept, it shows comprehensive electrochemical performance with a flat discharge voltage plateau of ≈1.7 V, an optimal energy density of 506 Wh kg-1 , and a capacity retention ratio of 85.1% after 2000 cycles, shining among the reported batteries. As a practical demonstration, this battery also shows excellent self-discharge performance with the capacity retention of 90% after a 10 h delay. This work subtly tunes the intrinsic electrochemical properties of the cobalt-based material through atomic-level structure engineering, opening a new opportunity for the advance of energy storage systems.
Collapse
Affiliation(s)
- Wenxu Shang
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China (USTC), Hefei, Anhui, 230026, China
- Deep Space Exploration Laboratory, Hefei, Anhui, 230026, China
| | - Huan Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Wentao Yu
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China (USTC), Hefei, Anhui, 230026, China
| | - Yi He
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China (USTC), Hefei, Anhui, 230026, China
| | - Yanyi Ma
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China (USTC), Hefei, Anhui, 230026, China
| | - Zhen Wu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Peng Tan
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China (USTC), Hefei, Anhui, 230026, China
| |
Collapse
|
3
|
Bismuth oxyformate microspheres assembled by ultrathin nanosheets as an efficient negative material for aqueous alkali battery. J Colloid Interface Sci 2023; 639:96-106. [PMID: 36804797 DOI: 10.1016/j.jcis.2023.02.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
A negative electrode with high capacity and rate capability is essential to match the capacity of a positive electrode and maximize the overall charge storage performance of an aqueous alkali battery (AAB). Due to the 3-electron redox reactions within a wide negative potential range, bismuth (Bi)-based compounds are recognized as efficient negative electrode materials. Herein, hierarchically structured bismuth oxyformate (BiOCOOH) assembled by ultrathin nanosheets was prepared by a solvothermal reaction for application as negative material for AAB. Given the efficient ion diffusion channels and sufficient exposure of the inner surface area, as well as the pronounced 3-electron redox activity of Bi species, the BiOCOOH electrode offered a high specific capacity (Cs, 229 ± 4 mAh g-1 at 1 A g-1) and superior rate capability (198 ± 6 mAh g-1 at 10 A g-1) within 0 ∼ -1 V. When pairing with the Ni3S2-MoS2 battery electrode, the AAB delivered a high energy density (Ecell, 217 mWh cm-2 at a power density (Pcell) of 661 mW cm-2), showing the potential of such a novel BiOCOOH negative material in battery-type charge storage.
Collapse
|
4
|
Fang Q, Sun M, Ren X, Sun Y, Yan Y, Gan Z, Huang J, Cao B, Shen W, Li Z, Fu Y. MnCo 2O 4/Ni 3S 4 nanocomposite for hybrid supercapacitor with superior energy density and long-term cycling stability. J Colloid Interface Sci 2021; 611:503-512. [PMID: 34971961 DOI: 10.1016/j.jcis.2021.12.122] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022]
Abstract
MnCo2O4 is regarded as a good electrode material for supercapacitor due to its high specific capacity and good structural stability. However, its poor electrical conductivity limits its wide-range applications. To solve this issue, we integrated the MnCo2O4 with Ni3S4, which has a good electrical conductivity, and synthesized a MnCo2O4/Ni3S4 nanocomposite using a two-step hydrothermal process. Comparing with individual MnCo2O4 and Ni3S4, the MnCo2O4/Ni3S4 nanocomposite showed a higher specific capacity and a better cycling stability as the electrode for the supercapacitor. The specific capacity value of the MnCo2O4/Ni3S4 electrode was 904.7 C g-1 at 1 A g-1 with a potential window of 0-0.55 V. A hybrid supercapacitor (HSC), assembled using MnCo2O4/Ni3S4 and active carbon as the cathode and anode, respectively, showed a capacitance of 116.4 F g-1 at 1 A g-1, and a high energy density of 50.7 Wh kg-1 at 405.8 W kg-1. Long-term electrochemical stability tests showed an obvious increase of the HSC's capacitance after 5500 charge/discharge cycles, reached a maximum value of ∼162.7% of its initial value after 25,000 cycles, and then remained a stable value up to 64,000 cycles. Simultaneously, its energy density was increased to 54.2 Wh kg-1 at 380.3 W kg-1 after 64,000 cycles.
Collapse
Affiliation(s)
- Qisheng Fang
- School of Physics, University of Electronic Science and Technology of China, Chengdu 6111731, PR China
| | - Mengxuan Sun
- School of Physics, University of Electronic Science and Technology of China, Chengdu 6111731, PR China
| | - Xiaohe Ren
- School of Physics, University of Electronic Science and Technology of China, Chengdu 6111731, PR China
| | - Yongxiu Sun
- School of Physics, University of Electronic Science and Technology of China, Chengdu 6111731, PR China
| | - Yijun Yan
- School of Physics, University of Electronic Science and Technology of China, Chengdu 6111731, PR China
| | - Ziwei Gan
- School of Physics, University of Electronic Science and Technology of China, Chengdu 6111731, PR China
| | - Jianan Huang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Baobao Cao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Wenzhong Shen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001, PR China
| | - Zhijie Li
- School of Physics, University of Electronic Science and Technology of China, Chengdu 6111731, PR China.
| | - YongQing Fu
- Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| |
Collapse
|
5
|
Ma L, Hu R, Kang C, Fu L, Chen Y, Liu H, Liu Q. Facile synthesis of three-dimensional Ni3Sn2S2 as a novel battery-type electrode material for high-performance supercapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Guo W, Tian Y, Wang S, Li J. Co2P wrapped Co3O4 grass-like nanowires for improved electrochemical performance in supercapacitors. CHEMICAL ENGINEERING SCIENCE: X 2021. [DOI: 10.1016/j.cesx.2021.100114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
7
|
A supercapacitor electrode formed from amorphous Co3(PO4)2 and the normal spinel CoIICoIII2O4. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Zhao Z, Xu W, Wang Z, Qin W, Lei J, Guo X, Long J. Investigation of organic impurity and its occurrence in industrial waste salt produced by physicochemical process. PLoS One 2021; 16:e0256101. [PMID: 34415952 PMCID: PMC8378702 DOI: 10.1371/journal.pone.0256101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/31/2021] [Indexed: 11/18/2022] Open
Abstract
Industrial waste salt is classified as hazardous waste to the environment. The organic impurity and its occurrence in industrial waste salt affect the salt resource utilization. In this paper, composition quantitative analysis, XRD, TG-DSC, SEM/FIB-SEM coupled with EDS, FTIR, XPS and GC-Ms were chosen to investigate the organic impurity and its occurrence in industrial waste salt. The organic impurities owe small proportion (1.77%) in the specimen and exhibit weak thermal stability within the temperature of 600°C. A clear definition of organic impurity, including 11 kinds of organic compounds, including aldehyde, benzene and its derivatives etc., were detected in the industrial waste salt. These organic impurities, owing (C-O/C-O-C, C-OH/C = O, C–C/CHx/C = C etc.)-containing function group substance, are mainly distributed both on the surface and inside of the salt particles. Meanwhile, the organic substance may combine with metal cations (Ni2+, Mg2+, Cu2+ etc.) through functional groups, such as hydroxide, carbonyl etc., which increases its stability in the industrial waste salt. These findings provide comprehensive information for the resource utilization of industrial waste salt from chemical industry etc.
Collapse
Affiliation(s)
- Zongwen Zhao
- School of Metallurgy & Environment, Central South University, Changsha, Hunan, China
- Postdoctoral Mobile Station of Central South University, Changsha, Hunan, China
- Dongjiang Environmental Co., Ltd., Shenzhen, Guangdong, China
- * E-mail:
| | - Wenbin Xu
- Dongjiang Environmental Co., Ltd., Shenzhen, Guangdong, China
| | - Zhongbing Wang
- School of Metallurgy & Environment, Central South University, Changsha, Hunan, China
- Postdoctoral Mobile Station of Central South University, Changsha, Hunan, China
- Dongjiang Environmental Co., Ltd., Shenzhen, Guangdong, China
| | - Weining Qin
- Dongjiang Environmental Co., Ltd., Shenzhen, Guangdong, China
| | - Jie Lei
- Green Eco-Manufacture Co., Ltd., Shenzhen, Guangdong, China
| | - Xinglin Guo
- Dongjiang Environmental Co., Ltd., Shenzhen, Guangdong, China
| | - Jiang Long
- Dongjiang Environmental Co., Ltd., Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Controlled preparation of Ni(OH)2/NiS nanosheet heterostructure as hybrid supercapacitor electrodes for high electrochemical performance. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138663] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Enhanced faradic activity by construction of p-n junction within reduced graphene oxide@cobalt nickel sulfide@nickle cobalt layered double hydroxide composite electrode for charge storage in hybrid supercapacitor. J Colloid Interface Sci 2021; 590:114-124. [PMID: 33524711 DOI: 10.1016/j.jcis.2021.01.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 01/06/2023]
Abstract
The intrinsic faradic reactivity is the uppermost factor determining the charge storage capability of battery material, the construction of p-n junction composing of different faradic components is a rational tactics to enhance the faradic activity. Herein, a reduced graphene oxide@cobalt nickle sulfide@nickle cobalt layered double hydroxide composite (rGO@CoNi2S4@NiCo LDH) with p-n junction structure is designed by deposition of n-type nickle cobalt layered double hydroxide (NiCo LDH) around p-type reduced graphene oxide@cobalt nickle sulfide (rGO@CoNi2S4), the charge redistribution across the p-n junction enables enhanced faradic activities of both components and further the overall charge storage capacity of the resultant rGO@CoNi2S4@NiCo LDH battery electrode. As expected, the rGO@CoNi2S4@NiCo LDH electrode can deliver high specific capacity (Cs, 1310 ± 26 C g-1 at 1 A g-1) and good cycleability (77% Cs maintaining ratio undergoes 5000 charge-discharge cycles). Furthermore, the hybrid supercapacitor (HSC) based on the rGO@CoNi2S4@NiCo LDH p-n junction battery electrode exports high energy density (Ecell, 57.4 Wh kg-1 at 323 W kg-1) and good durability, showing the prospect of faradic p-n junction composite in battery typed energy storage.
Collapse
|
11
|
Xu Y, Ye X, Qiu Y, Gan C, Huang L, Tang X, Luo X. A Novel Co
3
O
4
/MnO
2
/C Electrode with Hierarchical Heterostructure for High‐performance Lithium‐Ion Batteries. ChemistrySelect 2020. [DOI: 10.1002/slct.202003656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ying Xu
- Fujian Key Laboratory of Advanced Materials(Xiamen University) College of Materials Xiamen University Xiamen Fujian 361005 China
| | - Xiongbiao Ye
- Fujian Key Laboratory of Advanced Materials(Xiamen University) College of Materials Xiamen University Xiamen Fujian 361005 China
| | - Yiwei Qiu
- Fujian Key Laboratory of Advanced Materials(Xiamen University) College of Materials Xiamen University Xiamen Fujian 361005 China
| | - Chuanhai Gan
- Fujian Key Laboratory of Advanced Materials(Xiamen University) College of Materials Xiamen University Xiamen Fujian 361005 China
| | - Liuqing Huang
- Fujian Key Laboratory of Advanced Materials(Xiamen University) College of Materials Xiamen University Xiamen Fujian 361005 China
| | - Xueyuan Tang
- Fujian Key Laboratory of Advanced Materials(Xiamen University) College of Materials Xiamen University Xiamen Fujian 361005 China
| | - Xuetao Luo
- Fujian Key Laboratory of Advanced Materials(Xiamen University) College of Materials Xiamen University Xiamen Fujian 361005 China
| |
Collapse
|