1
|
Sun H, Wang J, Hu H, Duan F, Du M, Lu S. Interface engineering of supported palladium electrocatalyst with covalent organic polymer towards oxygen reduction reaction. J Colloid Interface Sci 2025; 682:157-164. [PMID: 39615135 DOI: 10.1016/j.jcis.2024.11.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 01/15/2025]
Abstract
Interface engineering is an important strategy to improve the oxygen reduction reaction (ORR) performance of metal-based electrocatalysts. However, how to develop efficient and abundant interface is still a challenge. Herein, the three-dimensional mesoporous metal oxide-supported Pd-based catalyst was prepared and its ORR activity was further improved through the interfacial modification with microporous covalent organic polymer. Due to the meso/microporous structure and optimized organic-inorganic interface, the as-obtained catalyst could provide abundant active sites and suitable electronic structure, which makes it as a superior catalyst toward alkaline ORR. The surface modified Pd catalyst shows an improved half-wave potential (E1/2) from 0.84 V to 0.86 V and an improved limiting current density (JL) from 5.8 mA cm-2 to 6.0 mA cm-2. Moreover, the developed catalyst has excellent methanol tolerance and stability during the long-time cycling. When it was used as cathodic electrocatalyst in zinc-air battery, a peak power density of 106 mW cm-2 could be achieved and the battery maintains excellent stability during cycling tests over 45 h, which is better than the benchmarked commercial Pt/C catalyst. This study provides an efficient interface engineering strategy for constructing active and stable electrocatalysts, which may be useful in ORR and other energy-related conversions.
Collapse
Affiliation(s)
- Huimin Sun
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Jinyan Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Hailong Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Fang Duan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Mingliang Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Shuanglong Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
2
|
Li H, Shi H, Dai Y, You H, Raj Babu Arulmani S, Zhang H, Feng C, Huang L, Zeng T, Yan J, Liu X. A Co-doped Oxygen Reduction Catalyst with FeCu promotes the Stability of Microbial Fuel Cells. J Colloid Interface Sci 2022; 628:652-662. [DOI: 10.1016/j.jcis.2022.07.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022]
|
3
|
Xiao F, Wang YC, Wu ZP, Chen G, Yang F, Zhu S, Siddharth K, Kong Z, Lu A, Li JC, Zhong CJ, Zhou ZY, Shao M. Recent Advances in Electrocatalysts for Proton Exchange Membrane Fuel Cells and Alkaline Membrane Fuel Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006292. [PMID: 33749011 DOI: 10.1002/adma.202006292] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/10/2020] [Indexed: 05/18/2023]
Abstract
The rapid progress of proton exchange membrane fuel cells (PEMFCs) and alkaline exchange membrane fuel cells (AMFCs) has boosted the hydrogen economy concept via diverse energy applications in the past decades. For a holistic understanding of the development status of PEMFCs and AMFCs, recent advancements in electrocatalyst design and catalyst layer optimization, along with cell performance in terms of activity and durability in PEMFCs and AMFCs, are summarized here. The activity, stability, and fuel cell performance of different types of electrocatalysts for both oxygen reduction reaction and hydrogen oxidation reaction are discussed and compared. Research directions on the further development of active, stable, and low-cost electrocatalysts to meet the ultimate commercialization of PEMFCs and AMFCs are also discussed.
Collapse
Affiliation(s)
- Fei Xiao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yu-Cheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhi-Peng Wu
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Guangyu Chen
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou, 511458, China
| | - Fei Yang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shangqian Zhu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Kumar Siddharth
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhijie Kong
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Aolin Lu
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Jin-Cheng Li
- Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou, 511458, China
| | - Chuan-Jian Zhong
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Zhi-You Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou, 511458, China
- Energy Institute, and Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| |
Collapse
|
4
|
Electronic and lattice strain dual tailoring for boosting Pd electrocatalysis in oxygen reduction reaction. iScience 2021; 24:103332. [PMID: 34805792 PMCID: PMC8586809 DOI: 10.1016/j.isci.2021.103332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/25/2021] [Accepted: 10/19/2021] [Indexed: 01/19/2023] Open
Abstract
Deliberately optimizing the d-band position of an active component via electronic and lattice strain tuning is an effective way to boost its catalytic performance. We herein demonstrate this concept by constructing core-shell Au@NiPd nanoparticles with NiPd alloy shells of only three atomic layers through combining an Au catalysis with the galvanic replacement reaction. The Au core with larger electronegativity modulates the Pd electronic configuration, while the Ni atoms alloyed in the ultrathin shells neutralize the lattice stretching in Pd shells exerted by Au cores, equipping the active Pd metal with a favorable d-band position for electrochemical oxygen reduction reaction in an alkaline medium, for which core-shell Au@NiPd nanoparticles with a Ni/Pd atomic ratio of 3/7 exhibit a half-wave potential of 0.92 V, specific activity of 3.7 mA cm-2, and mass activity of 0.65 A mg-1 at 0.9 V, much better than most of the recently reported Pd-even Pt-based electrocatalysts.
Collapse
|