1
|
Polydopamine Decorated Ru-Ni(OH)2 Nanosheets for Enhanced Performance of Hydrogen Evolution in Alkaline Media. Catal Letters 2022. [DOI: 10.1007/s10562-022-04036-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
2
|
Yu W, Chen Z, Xiao W, Chai Y, Dong B, Wu Z, Wang L. Phosphorous Doped Two-dimensional CoFe2O4 Nanobelt Decorated with Ru Nanoclusters and Co-Fe Hydroxide as Efficient Electrocatalysts Toward Hydrogen Generation. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00086e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Developing efficient and durable hydrogen evolution reaction (HER) electrocatalysts has attracted considerable concerns for large-scale hydrogen generation. In this work, phosphorous doped two-dimensional (2D) CoFe2O4 nanobelt decorated with Ru and...
Collapse
|
3
|
Shudo Y, Fukuda M, Islam MS, Kuroiwa K, Sekine Y, Karim MR, Hayami S. 3D porous Ni/NiO x as a bifunctional oxygen electrocatalyst derived from freeze-dried Ni(OH) 2. NANOSCALE 2021; 13:5530-5535. [PMID: 33688871 DOI: 10.1039/d0nr08034a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bifunctional electrocatalytic properties of freeze-dried Ni/NiOx, freeze-dried NiO, and freeze-dried Ni(OH)2 are reported. Freeze-dried Ni(OH)2 was synthesized by the freeze-drying method. Freeze-dried Ni/NiOx and freeze-dried Ni were obtained from the thermal annealing of the material. Both Ni(OH)2 and Ni/NiOx could sustain with freestanding freeze-dried 3D structures without any carbon support. Freeze-dried Ni/NiOx exhibited excellent bifunctional electrocatalytic properties with the ORR performance at 0.62 V (half-wave potential) and OER at 1.47 V (η = 10 mA cm-2). Using freeze-dried metal hydroxides can be considered useful in a wide range of carbon-free applications and can improve the electrocatalytic performance. The bifunctional catalytic activities were calculated to be 0.86, 0.98 and 1.14 V for freeze-dried Ni/NiOx, freeze-dried NiO and freeze-dried Ni(OH)2, respectively. The stacking of 2D sheets into 3D mass seemed to play a vital role behind this excellent bifunctionality of freeze-dried Ni/NiOx. The material reveals possible applications in Zn-air batteries. Besides, the strategy developed herein could be justified to obtain other transition metal-oriented bifunctional electrocatalysts as alternatives to Pt- and Ir/Ru-based expensive benchmark catalysts.
Collapse
Affiliation(s)
- Yuta Shudo
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Masahiro Fukuda
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Md Saidul Islam
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan. and Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Keita Kuroiwa
- Department of Nanoscience, Faculty of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Yoshihiro Sekine
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Mohammad Razaul Karim
- Department of Chemistry, School of physical Science, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh and Department of Chemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan. and Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|