1
|
Jiang Y, Shen Z, Liu Z, Gong H, Chen B, Su Y, Zhou J, Fei X, Li Y. Biomimetic biomass-based composite carbon aerogels with excellent mechanical performance for energy storage and pressure sensing in extreme environments. J Colloid Interface Sci 2025; 683:786-798. [PMID: 39708729 DOI: 10.1016/j.jcis.2024.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024]
Abstract
The poor mechanical properties of biomass-based carbon aerogels after carbonization severely limit their application in pressure sensing and energy storage for wearable devices and electronic skin. In this work, a supramolecular assembly structure was designed inspired by the unique microstructure of natural wood for the preparation of biomass-based carbon aerogels with supercompressibility, elasticity, stable strain electrical signal response, and wide sensitive detection. Bacterial cellulose and lignin were selected as the main components of the biomass-based composite aerogel 'cell wall'. The graphene oxide with an aromatic structure was introduced to induce the assembly of firmly attached lignin and bacterial cellulose. The prepared biomass-based carbon aerogels exhibit supercompressibility (at least 100 cycles at 90 % strain), high elasticity (88.88 % height retention after 1000 cycles at a strain of 50 %), surprising temperature-constant superelasticity and fatigue resistance (shape retention rate greater than 85 %) at -196 ℃. In particular, it exhibits temperature-invariant high linear sensitivity over an extremely wide operating pressure range (0-43 kPa), allowing accurate detection of human signals. In addition, the prepared carbon aerogels exhibit excellent performance in supercapacitors. It has a specific capacitance of 158F/g at a current density of 1 A/g and an energy density of 18.75 Wh/kg at a high power density of 2500 W/g. This strategy also demonstrates its promise as a wearable device in hostile environments.
Collapse
Affiliation(s)
- Yuewei Jiang
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province, 116034, China
| | - Ziyi Shen
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province, 116034, China
| | - Ziyi Liu
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province, 116034, China
| | - Hui Gong
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province, 116034, China
| | - Bo Chen
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province, 116034, China
| | - Yingying Su
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province, 116034, China
| | - Jinghui Zhou
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province, 116034, China
| | - Xu Fei
- Shandong Tonye Photoresist Material Technology CO., LTD, Weifang, 261206, China; Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China.
| | - Yao Li
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province, 116034, China; Shandong Tonye Photoresist Material Technology CO., LTD, Weifang, 261206, China.
| |
Collapse
|
2
|
Niculescu AG, Mihaiescu B, Bîrcă AC, Moroșan A, Munteanu (Mihaiescu) OM, Vasile BȘ, Hadibarata T, Istrati D, Mihaiescu DE, Grumezescu AM. Fabrication and Advanced Imaging Characterization of Magnetic Aerogel-Based Thin Films for Water Decontamination. Gels 2024; 10:394. [PMID: 38920940 PMCID: PMC11202994 DOI: 10.3390/gels10060394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Aerogels have emerged as appealing materials for various applications due to their unique features, such as low density, high porosity, high surface area, and low thermal conductivity. Aiming to bring the advantages of these materials to the environmental field, this study focuses on synthesizing magnetic silica aerogel-based films suitable for water decontamination. In this respect, a novel microfluidic platform was created to obtain core-shell iron oxide nanoparticles that were further incorporated into gel-forming precursor solutions. Afterward, dip-coating deposition was utilized to create thin layers of silica-based gels, which were further processed by 15-hour gelation time, solvent transfer, and further CO2 desiccation. A series of physicochemical analyses (XRD, HR-MS FT-ICR, FT-IR, TEM, SEM, and EDS) were performed to characterize the final films and intermediate products. The proposed advanced imaging experimental model for film homogeneity and adsorption characteristics confirmed uniform aerogel film deposition, nanostructured surface, and ability to remove pesticides from contaminated water samples. Based on thorough investigations, it was concluded that the fabricated magnetic aerogel-based thin films are promising candidates for water decontamination and novel solid-phase extraction sample preparation.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (B.M.); (A.C.B.); (O.M.M.); (B.Ș.V.); (T.H.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Bogdan Mihaiescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (B.M.); (A.C.B.); (O.M.M.); (B.Ș.V.); (T.H.); (A.M.G.)
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (B.M.); (A.C.B.); (O.M.M.); (B.Ș.V.); (T.H.); (A.M.G.)
| | - Alina Moroșan
- Department of Organic Chemistry, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.M.); (D.I.)
| | - Oana Maria Munteanu (Mihaiescu)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (B.M.); (A.C.B.); (O.M.M.); (B.Ș.V.); (T.H.); (A.M.G.)
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (B.M.); (A.C.B.); (O.M.M.); (B.Ș.V.); (T.H.); (A.M.G.)
| | - Tony Hadibarata
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (B.M.); (A.C.B.); (O.M.M.); (B.Ș.V.); (T.H.); (A.M.G.)
- Department of Environmental Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Miri 98009, Malaysia
| | - Daniela Istrati
- Department of Organic Chemistry, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.M.); (D.I.)
| | - Dan Eduard Mihaiescu
- Department of Organic Chemistry, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.M.); (D.I.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (B.M.); (A.C.B.); (O.M.M.); (B.Ș.V.); (T.H.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
3
|
Mombeshora ET, Muchuweni E. Dynamics of reduced graphene oxide: synthesis and structural models. RSC Adv 2023; 13:17633-17655. [PMID: 37312999 PMCID: PMC10258683 DOI: 10.1039/d3ra02098c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023] Open
Abstract
Technological advancements are leading to an upsurge in demand for functional materials that satisfy several of humankind's needs. In addition to this, the current global drive is to develop materials with high efficacy in intended applications whilst practising green chemistry principles to ensure sustainability. Carbon-based materials, such as reduced graphene oxide (RGO), in particular, can possibly meet this criterion because they can be derived from waste biomass (a renewable material), possibly synthesised at low temperatures without the use of hazardous chemicals, and are biodegradable (owing to their organic nature), among other characteristics. Additionally, RGO as a carbon-based material is gaining momentum in several applications due to its lightweight, nontoxicity, excellent flexibility, tuneable band gap (from reduction), higher electrical conductivity (relative to graphene oxide, GO), low cost (owing to the natural abundance of carbon), and potentially facile and scalable synthesis protocols. Despite these attributes, the possible structures of RGO are still numerous with notable critical variations and the synthesis procedures have been dynamic. Herein, we summarize the highlights from the historical breakthroughs in understanding the structure of RGO (from the perspective of GO) and the recent state-of-the-art synthesis protocols, covering the period from 2020 to 2023. These are key aspects in the realisation of the full potential of RGO materials through the tailoring of physicochemical properties and reproducibility. The reviewed work highlights the merits and prospects of the physicochemical properties of RGO toward achieving sustainable, environmentally friendly, low-cost, and high-performing materials at a large scale for use in functional devices/processes to pave the way for commercialisation. This can drive the sustainability and commercial viability aspects of RGO as a material.
Collapse
Affiliation(s)
- Edwin T Mombeshora
- Department of Chemistry and Earth Sciences, University of Zimbabwe Mount Pleasant Harare MP167 Zimbabwe
| | - Edigar Muchuweni
- Department of Engineering and Physics, Bindura University of Science Education Bindura Zimbabwe
| |
Collapse
|
4
|
Guo Z, Song R, Zhang L, Li Z, Yao H, Liu Q, Wang J, Li Z. Three-dimensional carbon dots/Prussian blue analogues nanocubes /nickel foams as self-standing electrodes for high-performance hybrid electrochemical capacitors. J Colloid Interface Sci 2022; 613:796-805. [DOI: 10.1016/j.jcis.2022.01.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 11/28/2022]
|
5
|
Jia H, Zhu X, Song T, Pan J, Peng F, Li L, Liu Y. Hierarchical nanocomposite of carbon-fiber-supported NiCo-based layered double-hydroxide nanosheets decorated with (NiCo)Se 2 nanoparticles for high performance energy storage. J Colloid Interface Sci 2022; 608:175-185. [PMID: 34634543 DOI: 10.1016/j.jcis.2021.09.181] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/17/2023]
Abstract
Exploring novel structures consisting of multiple highly active components is a crucial challenge for supercapacitor applications. Using an in-situ self-templated method, we demonstrate the controlled fabrication of a fibrous hierarchical nanocomposite made of carbon microfibers covered with a layer of metal-organic framework (MOF) derived from nickel-cobalt layered double-hydroxide (NiCo-LDH) nanosheets decorated with (NiCo)Se2 nanoparticles. The (NiCo)Se2 nanoparticles attached tightly onto the surface of the two-dimensional NiCo-LDH, both of which were generated by the decomposition of the NiCo-based MOF, and exhibited multiple active sites that contributed to improved electrical conductivity, high capacity, and structural stability. Density functional theory calculations revealed that the density of states near the Fermi level was significantly enhanced, favoured OH- adsorption, and promoted the kinetics of the electrochemical reaction. Benefiting from the intrinsic synergetic contributions from the hierarchical nanoscale structure, the electrode made from the nanocomposite delivered an impressive capacity of 1394.2 F g-1 (702.7 C g-1) at 1 A g-1. Furthermore, a hybrid supercapacitor based on the developed nanocomposite demonstrated an energy density of 50.6 W h kg-1 and a power density of 800 W kg-1 with high cyclic stability. Our results suggest that the hierarchical nanocomposite can be a powerful electrode for advanced next-generation supercapacitors.
Collapse
Affiliation(s)
- Hong Jia
- College of Physics and Electronic Information & Henan Key Laboratory of Electromagnetic Transformation and Detection, Luoyang Normal University, Luoyang 471934, China.
| | - Xinyu Zhu
- College of Physics and Electronic Information & Henan Key Laboratory of Electromagnetic Transformation and Detection, Luoyang Normal University, Luoyang 471934, China
| | - Tingting Song
- College of Physics and Electronic Information & Henan Key Laboratory of Electromagnetic Transformation and Detection, Luoyang Normal University, Luoyang 471934, China
| | - Jinping Pan
- ZheJiang Haina Semiconductor Co, Ltd., No.5 Wanxiang road, Huabu town, KaihuaCounty, Quzhou City, Zhejiang Province 324300, China.
| | - Feng Peng
- College of Physics and Electronic Information & Henan Key Laboratory of Electromagnetic Transformation and Detection, Luoyang Normal University, Luoyang 471934, China
| | - Longhua Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Yu Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
6
|
Enhanced electrochemical performance of redox conductive polymer in the presence of high efficient modified reduced graphene oxide. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02073-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Khodaei Kahriz P, Heidari AA, Ehsani A, Mahdavi H, Bigdeloo M, Rezaei Z. Superior rate capability and cyclic stability of poly orthoaminophenol nanocomposite film in the presence of benzidine functionalized graphene oxide. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Ali Akbar Heidari
- School of Chemistry, College of Science University of Tehran Tehran Iran
| | - Ali Ehsani
- Department of Chemistry, Faculty of Science University of Qom Qom Iran
| | - Hossein Mahdavi
- School of Chemistry, College of Science University of Tehran Tehran Iran
| | - Mohmmad Bigdeloo
- Department of Chemistry, Faculty of Science University of Qom Qom Iran
| | - Zahra Rezaei
- Department of Chemistry, Faculty of Science University of Qom Qom Iran
| |
Collapse
|
8
|
Chen X, Zhu C, Jiang F, Liu G, Liu C, Jiang Q, Xu J, An J, Liu P. Regulating monomer assembly to enhance PEDOT capacitance performance via different oxidants. J Colloid Interface Sci 2021; 601:265-271. [PMID: 34082231 DOI: 10.1016/j.jcis.2021.05.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
The development of poly(3,4-ethylenedioxythiophene) (PEDOT) with high specific capacitance is the key to pursuing high-performance supercapacitors, and the electrochemical properties of PEDOT are closely related to the oxidation degree and conjugated chain length of its molecular chain. In this work, the influences of various oxidants (FeCl3, Fe(Tos)3 and MoCl5) on the molecular chain structure and capacitive properties of PEDOT via vapor phase polymerization were systematically investigated. Fe(Tos)3 can significantly improve the degree of oxidation and the length of the conjugated chain of PEDOT compared to FeCl3 and MoCl5, enhancing the conductivity and providing more active sites for Faraday reaction. Therefore, the PEDOT/P(Fe(Tos)3) electrode displays a considerable conductivity of 73 S cm-1, high areal capacitance (419 mF cm-2) and excellent electrochemical stability under the different bent state. Moreover, the conjugated structure strengthens the interaction between PEDOT chains, achieving good cycle stability. Therefore, Fe(Tos)3 is an ideal oxidant for obtaining high-performance PEDOT electrode materials.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Physics, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China; Flexible Electronics Innovation Institute (FEII), Jiangxi Science & Technology Normal University, Nanchang, 330013, PR China
| | - Chunyan Zhu
- Department of Physics, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Fengxing Jiang
- Department of Physics, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| | - Guoqiang Liu
- Department of Physics, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Congcong Liu
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science & Technology Normal University, Nanchang, 330013, PR China
| | - Qinglin Jiang
- Institute Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, PR China
| | - Jingkun Xu
- Department of Physics, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China; Flexible Electronics Innovation Institute (FEII), Jiangxi Science & Technology Normal University, Nanchang, 330013, PR China
| | - Jianyu An
- Department of Physics, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Peipei Liu
- Department of Physics, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| |
Collapse
|
9
|
Ehsani A, Rezaei Z, Agah A, Shiri HM, Heidari A. Electrochemical and theoretical investigation of functionalized reduced graphene aerogel modified electrode for lead ions sensing. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Bao S, Tu M, Huang H, Wang C, Chen Y, Sun B, Xu B. Heterogeneous iron oxide nanoparticles anchored on carbon nanotubes for high-performance lithium-ion storage and fenton-like oxidation. J Colloid Interface Sci 2021; 601:283-293. [PMID: 34087591 DOI: 10.1016/j.jcis.2021.05.137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 11/16/2022]
Abstract
In this work, heterogeneous hematite (Fe2O3) and magnetite (Fe3O4) nanoparticles are jointly engineered on the external surface of multi-walled carbon nanotubes (CNTs) to construct a composite material (Fe2O3@Fe3O4/CNT). A simple one-step redox reaction is triggered in a hydrothermal reaction system containing functionalized CNT (FCNT) aqueous suspension and iron foils. Both Fe2O3 and Fe3O4 nanoparticles with controlled size are generated and well dispersed in the interconnected CNT framework. Controlled samples of Fe2O3@Fe3O4 and Fe3O4/CNT have also been prepared and used to investigate the synthetic mechanism and evaluate the lithium-ion storage performances. As an anodic active material for lithium-ion batteries, the Fe2O3@Fe3O4/CNT composite delivered a high reversible capacity of about 924 mAh·g-1 for 200 continual charge/discharge cycles under a high current rate of 1000 mA·g-1. As a catalyst in a Fenton-like reaction for degrading methyl orange (MO) contaminant in waterbody, the Fe2O3@Fe3O4/CNT composite exhibited an attractive decomposition efficiency (99.5% decomposition within 60 min) and good stability. The beneficial factors contributing to the inspiring performances are discussed. The effective and scalable material design and synthesis method can be regarded to have good potential in other fields.
Collapse
Affiliation(s)
- Shouchun Bao
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Mengyao Tu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Haowei Huang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Can Wang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yiyu Chen
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Baofen Sun
- Shandong Vocational College of Science and Technology, Weifang 261053, China.
| | - Binghui Xu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
11
|
"Carbon quantum dots-glue" enabled high-capacitance and highly stable nickel sulphide nanosheet electrode for supercapacitors. J Colloid Interface Sci 2021; 601:669-677. [PMID: 34091314 DOI: 10.1016/j.jcis.2021.05.099] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 11/20/2022]
Abstract
A facile "carbon quantum dots glue" strategy for the fabrication of honeycomb-like carbon quantum dots/nickel sulphide network arrays on Ni foam surface is successfully demonstrated. This design realizes the immobilization of nanosheet arrays and maintains a strong adhesion to the collector, forming a three-dimensional (3D) honeycomb-like architecture. Thanks to the unique structural advantages, the resulting bind-free electrode with high active mass loading of 6.16 mg cm-2 still exhibits a superior specific capacitance of 1130F g-1 at 2 A g-1, and maintains 80% of the initial capacitance even at 10 A g-1 after 3000 cycles. Furthermore, the assembled asymmetrical supercapacitor delivers an energy density of 18.8 Wh kg-1 at a power density of 134 W kg-1, and outstanding cycling stability (100% of initial capacitance retention after 5000 cycles at 5 mA cm-2). These impressive results indicate a new perspective to design various binder-free electrodes for electrochemical energy storage devices.
Collapse
|
12
|
Liu Y, Ma Z, Xin N, Ying Y, Shi W. High-performance supercapacitor based on highly active P-doped one-dimension/two-dimension hierarchical NiCo 2O 4/NiMoO 4 for efficient energy storage. J Colloid Interface Sci 2021; 601:793-802. [PMID: 34102407 DOI: 10.1016/j.jcis.2021.05.095] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
Multi-dimensional metal oxides have become a promising alternative electrode material for supercapacitors due to their inherent large surface area. Herein, P-doped NiCo2O4/NiMoO4 multi-dimensional nanostructures are synthesized on carbon clothes (CC) with a continuous multistep strategy. Especially, P has the best synergistic effect with transition metals, such as optimal deprotonation energy and OH- adsorption energy, which can further enhance electrochemical reaction activity. For the above reasons, the P-NiCo2O4/NiMoO4@CC electrode exhibits an ultra-high specific capacitance of 2334.0 F g-1 at 1 A g-1. After 1500 cycles at a current density of 10 A g-1, its specific capacity still maintains 93.7%. Besides, a P-NiCo2O4/NiMoO4@CC//activated carbon device (hybrid supercapacitor or device) was also prepared with a maximum energy density of 45.1 Wh kg-1 at a power density of 800 W kg-1. In particular, the capacity retention rate is still 89.97% after 8000 cycles due to its excellent structural stability. Our work demonstrates the vast potential of multi-dimensional metal oxides in energy storage.
Collapse
Affiliation(s)
- Yu Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Oliter Energy Technology Co, Ltd, Gaoyou 225600, PR China.
| | - Zhenlin Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Na Xin
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yulong Ying
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|