1
|
Wu K, Wang C, Lang X, Cheng J, Wu H, Lyu C, Lau WM, Liang Z, Zhu X, Zheng J. Insight into selenium vacancies enhanced CoSe 2/MoSe 2 heterojunction nanosheets for hydrazine-assisted electrocatalytic water splitting. J Colloid Interface Sci 2023; 654:1040-1053. [PMID: 39491062 DOI: 10.1016/j.jcis.2023.10.106] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/02/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024]
Abstract
The integration of interface engineering and vacancy engineering was a feasible way to develop highly efficient electrocatalysts toward water electrolysis. Herein, we designed CoSe2/MoSe2 heterojunction nanosheets with abundant Se vacancies (VSe-CoSe2/MoSe2) for electrocatalytic water splitting. In the VSe-CoSe2/MoSe2 electrocatalyst, the electrons more easily transferred from CoSe2 to MoSe2, and interface engineering not only modulated the electronic structure, but also supplied more heterointerfaces and catalytic sites. After chemical etching, partial Se atoms were eliminated, which further activated the inert plane of the VSe-CoSe2/MoSe2 electrocatalyst and induced electron redistribution. The removal of surface Se atoms was also beneficial to expose inner reactive sites, which promoted adsorption toward reaction intermediates. Density functional theory calculations revealed that interface engineering and vacancy engineering collaboratively optimized the adsorption energy of the VSe-CoSe2/MoSe2 electrocatalyst toward the intermediate H* during the hydrogen evolution reaction process, leading to better electrocatalytic activity. The density of state diagram manifested the refined electronic structure of the VSe-CoSe2/MoSe2 electrocatalyst, and it exhibited a higher electronic state near the Fermi level, which indicated superior electronic conductivity, facilitating electron transport during the catalytic process. In alkaline media, the VSe-CoSe2/MoSe2 electrocatalyst delivered low overpotentials of merely 74 and 242 mV to obtain 10 mA cm-2 toward hydrogen evolution reaction and oxygen evolution reaction. This work illustrated the feasibility of combining two or more strategies to develop high-performance catalysts for water electrolysis.
Collapse
Affiliation(s)
- Kaili Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
| | - Chenjing Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiufeng Lang
- Department of Physics, Hebei Normal University of Science & Technology, Qinghuangdao 066004, China.
| | - Jiarun Cheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hongjing Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chaojie Lyu
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
| | - Woon-Ming Lau
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
| | - Zhengwenda Liang
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xixi Zhu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Jinlong Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China.
| |
Collapse
|
2
|
Tang C, Zhong L, Xiong R, Xiao Y, Cheng B, Lei S. Regulable in-situ autoredox for anchoring synergistic Ni/NiO nanoparticles on reduced graphene oxide with boosted alkaline electrocatalytic oxygen evolution. J Colloid Interface Sci 2023; 648:181-192. [PMID: 37301143 DOI: 10.1016/j.jcis.2023.05.179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
To develop ideal alternatives to noble metal catalysts, transition metal catalysts supported on graphene have been receiving extensive attention in the field of electrochemical energy. In this work, using graphene oxide (GO) and nickel formate as precursors, Ni/NiO synergistic nanoparticles with regulable composition are anchored on reduced graphene oxide (RGO) to prepare Ni/NiO/RGO composite electrocatalysts through in-situ autoredox. Thanks to the synergistic effect of Ni3+ active sites and Ni electron donors, the as-prepared Ni/NiO/RGO catalysts exhibit efficient electrocatalytic oxygen evolution performance in 1.0 M KOH electrolyte. The optimal sample has an overpotential of only 275 mV at a current density of 10 mA cm-2 and a small Tafel slope of 90 mV dec-1, which are very comparable to those of commercial RuO2 catalyst. Additionally, the catalytic capacity and structure remain stable after 2000 cyclic voltammetry cycles. For the electrolytic cell assembled with the best-performing sample as anode and commercial Pt/C as cathode, the current density can reach 10 mA cm-2 at a low potential of 1.57 V and remains stable after 30 h of continuous work. It would be expected that the as-developed Ni/NiO/RGO catalyst with high activity should have broad application prospects.
Collapse
Affiliation(s)
- Changcun Tang
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Longsheng Zhong
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Renzhi Xiong
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yanhe Xiao
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Baochang Cheng
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Shuijin Lei
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031, China.
| |
Collapse
|
3
|
Silva JO, Cartagena S, Calderón JA. NOVEL ELECTRODEPOSITED NiFeP/Zn BIFUNCTIONAL CATALYTIC COATING FOR ALKALINE WATER SPLITTING. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
4
|
Jin C, Hou M, Li X, Liu D, Qu D, Dong Y, Xie Z, Zhang C. Rapid electrodeposition of Fe-doped nickel selenides on Ni foam as a bi-functional electrocatalyst for water splitting in alkaline solution. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Yin X, Dai X, Nie F, Ren Z, Yang Z, Gan Y, Wu B, Cao Y, Zhang X. Electronic modulation and proton transfer by iron and borate co-doping for synergistically triggering the oxygen evolution reaction on a hollow NiO bipyramidal prism. NANOSCALE 2021; 13:14156-14165. [PMID: 34477697 DOI: 10.1039/d1nr03500b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Designing an Earth-abundant and inexpensive electrocatalyst to drive the oxygen evolution reaction (OER) for high-purity hydrogen production is of great importance. Herein, the cation (iron) and anion (borate) co-doping strategy was proposed to effectively trigger the OER performance on a low-cost NiO material. The optimal hollow Fe/Bi-NiO bipyramidal prism shows superior OER performance, and displays a low overpotential (261 mV) at 10 mA cm-2, accompanied by a low Tafel slope (46 mV dec-1), excellent intrinsic activity and robust stability. The overall alkaline water splitting using Fe/Bi-NiO/NF as an anode affords low cell voltages of 1.50 and 1.63 V at 10 and 100 mA cm-2, and operates steadily at a high current density of 100 mA cm-2 for 55 h without decay. The excellent electrocatalytic activity could be ascribed to the hollow structure to shorten the mass transfer pathway, the electronic modulation by Fe doping, the increased accessible electroactive sites created by oxygen vacancies through borate doping, and the formation of BO33--OH- to accelerate the deprotonation of OHads.
Collapse
Affiliation(s)
- Xueli Yin
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Changping, Beijing 102249, China.
| | | | | | | | | | | | | | | | | |
Collapse
|