1
|
Keshavarz S, Okoro OV, Hamidi M, Derakhshankhah H, Azizi M, Nabavi SM, Gholizadeh S, Amini SM, Shavandi A, Luque R, Samadian H. Synthesis, surface modifications, and biomedical applications of carbon nanofibers: Electrospun vs vapor-grown carbon nanofibers. Coord Chem Rev 2022; 472:214770. [PMID: 37600158 PMCID: PMC10438895 DOI: 10.1016/j.ccr.2022.214770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Engineered nanostructures are materials with promising properties, enabled by precise design and fabrication, as well as size-dependent effects. Biomedical applications of nanomaterials in disease-specific prevention, diagnosis, treatment, and recovery monitoring require precise, specific, and sophisticated approaches to yield effective and long-lasting favorable outcomes for patients. In this regard, carbon nanofibers (CNFs) have been indentified due to their interesting properties, such as good mechanical strength, high electrical conductivity, and desirable morphological features. Broadly speaking, CNFs can be categorized as vapor-grown carbon nanofibers (VGCNFs) and carbonized CNFs (e.g., electrospun CNFs), which have distinct microstructure, morphologies, and physicochemical properties. In addition to their physicochemical properties, VGCNFs and electrospun CNFs have distinct performances in biomedicine and have their own pros and cons. Indeed, several review papers in the literature have summarized and discussed the different types of CNFs and their performances in the industrial, energy, and composites areas. Crucially however, there is room for a comprehensive review paper dealing with CNFs from a biomedical point of view. The present work therefore, explored various types of CNFs, their fabrication and surface modification methods, and their applications in the different branches of biomedical engineering.
Collapse
Affiliation(s)
- Samaneh Keshavarz
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Oseweuba Valentine Okoro
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Masoud Hamidi
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Azizi
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Mohammad Nabavi
- Advanced Medical Pharma (BIOTEC), 82100, Benevento, Italy
- Nutringredientes Research Group, Federal Institute of Education, Science and Technology (IFCE), Brazil
| | - Shayan Gholizadeh
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Seyed Mohammad Amini
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Rafael Luque
- Departamento de Quimica Organica, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, Cordoba, Spain
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198, Moscow, Russian Federation
| | - Hadi Samadian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
2
|
Li Z, Pang T, Shen J, Fletcher PJ, Mathwig K, Marken F. Ionic diode desalination: Combining cationic Nafion™ and anionic Sustainion™ rectifiers. MICRO AND NANO ENGINEERING 2022. [DOI: 10.1016/j.mne.2022.100157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
4
|
Riza Putra B, Tshwenya L, Buckingham MA, Chen J, Jeremiah Aoki K, Mathwig K, Arotiba OA, Thompson AK, Li Z, Marken F. Microscale Ionic Diodes: An Overview. ELECTROANAL 2021. [DOI: 10.1002/elan.202060614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Budi Riza Putra
- Department of Chemistry University of Bath Claverton Down, Bath BA2 7AY UK
- Department of Chemistry Faculty of Mathematics and Natural Sciences Bogor Agricultural University Bogor, West Java Indonesia
| | - Luthando Tshwenya
- Department of Chemical Sciences University of Johannesburg Johannesburg, Doornfontein 2028 South Africa
| | - Mark A. Buckingham
- Department of Chemistry Britannia House King's College London London SE1 1DB UK
| | - Jingyuan Chen
- University of Fukui Department of Applied Physics 3-9-1 Bunkyo Fukui 9100017 Japan
| | - Koichi Jeremiah Aoki
- University of Fukui Department of Applied Physics 3-9-1 Bunkyo Fukui 9100017 Japan
| | - Klaus Mathwig
- Stichting imec Nederland within OnePlanet Research Center Bronland 10 6708 WH Wageningen Netherlands
| | - Omotayo A. Arotiba
- Department of Chemical Sciences University of Johannesburg Johannesburg, Doornfontein 2028 South Africa
- Centre for Nanomaterials Science Research University of Johannesburg South Africa
| | | | - Zhongkai Li
- Department of Chemistry University of Bath Claverton Down, Bath BA2 7AY UK
| | - Frank Marken
- Department of Chemistry University of Bath Claverton Down, Bath BA2 7AY UK
| |
Collapse
|