1
|
Cabrera V, López-Vizcaíno R, Yustres Á, Navarro V. Reactive transport model for bentonites in COMSOL multiphysics: Benchmark and validation exercise. CHEMOSPHERE 2024; 350:141050. [PMID: 38154672 DOI: 10.1016/j.chemosphere.2023.141050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 12/30/2023]
Abstract
At present, the deep geological repository concept for spent nuclear fuel is considered the most reliable and safe technique for the permanent disposal of this type of waste. One of the many safety elements used is an engineered barrier made of compacted bentonite. This material allows the encapsulated waste to be isolated from the host rock. Therefore, there is great interest in a detailed study of the behavior of bentonites to different changes in the composition of the surrounding groundwater. In this context, this work presents a new reactive transport model for bentonites implemented in the COMSOL Multiphysics platform. The model contemplates a non-simplistic geochemical system composed of 42 species and 4 minerals. Reactive transport involves the diffusive-dispersive-advective processes defined by the Nernst Planck equations for two overlapping modeling levels (macro- and microstructural) to simulate the behavior of double-porosity media. The uniqueness of this model is that the system of equations used to calculate the chemical speciation problem and the advective-diffusive-dispersive transport can be integrally solved in COMSOL. The model has been satisfactorily verified and validated using the benchmark exercise consisting of the simulation of the multicomponent advective-diffusive column experiment conducted on a compacted bentonite core extracted from a field experiment (LOT project) in the Äspö Hardrock laboratory (Sweden).
Collapse
Affiliation(s)
- Virginia Cabrera
- Geoenvironmental Group, Department of Civil Engineering and Construction, Civil Engineering School, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Rubén López-Vizcaíno
- Geoenvironmental Group, Department of Civil Engineering and Construction, Civil Engineering School, University of Castilla-La Mancha, Ciudad Real, Spain.
| | - Ángel Yustres
- Geoenvironmental Group, Department of Civil Engineering and Construction, Civil Engineering School, University of Castilla-La Mancha, Ciudad Real, Spain.
| | - Vicente Navarro
- Geoenvironmental Group, Department of Civil Engineering and Construction, Civil Engineering School, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
2
|
Zhang Y, Chen M, Wang J, Deng Y, Li Z. A new method for assessment of electro-osmotic permeability through the integration of theoretical and experimental ion flux in electrokinetic processes. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132049. [PMID: 37478588 DOI: 10.1016/j.jhazmat.2023.132049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Electrokinetic (EK) technology is promising for removing heavy metals from contaminated unsaturated soils. It is crucial to accurately determine the unsaturated electro-osmotic permeability for predicting the efficiency of EK treatment, optimizing treatment strategies, and accurately predicting the distribution of contaminant concentrations. However, the current approach of estimating unsaturated electro-osmotic permeability, which involves measuring effective voltage, drainage volume, and performing exponential fitting, fails to address the issue of uneven voltage gradient distribution during EK treatment. Herein, a novel method was presented for estimating the electro-osmotic permeability of unsaturated porous media. This method quantifies the electro-osmotic flow in an unsaturated porous medium by considering the difference in mass-transfer efficiency (MTE) between real (with electro-osmotic flow) and hypothetical cases (without electro-osmotic flow). This difference serves as a metric for estimating the electro-osmotic permeability. Results revealed a linear relationship between the electro-osmotic permeability and the product of volumetric moisture content and tortuosity, with the slope related to the ionic mobility of target ions, hypothetical and actual MTE. To validate this method, hexavalent Cr (Cr(VI)) was selected as the target contaminant and six EK experiments were conducted with varying initial volumetric moisture content. The feasibility of the method was evaluated by fitting the results of these experiments to obtain the specific slope of the porous medium used. Compared to the existing effective voltage-drainage volume-exponential fitting method, the proposed method offers several advantages. First, it effectively addressed the issue of nonuniform voltage distribution during EK treatment in the unsaturated porous medium. Second, it overcame the problem of a nonzero electro-osmotic permeability at zero volumetric moisture content in the exponential empirical formula. Third, the proposed method was based on theoretical derivations instead of relying solely on empirical fitting. Finally, the proposed method does not require a prior estimate of the saturated electro-osmotic permeability of the porous medium.
Collapse
Affiliation(s)
- Yuting Zhang
- Guangdong Key Laboratory of Contaminated Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China; School of Earth Science and Engineering, Hohai University, No.8 Focheng West Road, Nanjing 211100, China; Department of Civil & Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, ON M5S 1A4, Canada
| | - Meng Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jinguo Wang
- School of Earth Science and Engineering, Hohai University, No.8 Focheng West Road, Nanjing 211100, China.
| | - Yirong Deng
- Guangdong Key Laboratory of Contaminated Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China.
| | - Zhaofeng Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu 610059, China; College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu 610059, China
| |
Collapse
|
3
|
Yang X, Shi G, Wu C, Sun H. Theoretical determination of zeta potential for the variable charge soil considering the pH variation based on the Stern-Gouy double-layer model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:24742-24750. [PMID: 36631620 DOI: 10.1007/s11356-022-25126-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Electrokinetic remediation (EKR) is a promising alternative for the contaminated soil with low hydraulic permeability. The nonlinearity of the electroosmotic flow (EOF) is mainly induced by the nonuniform variation of the pH and thus the zeta potential of the soil during the EKR process. The empirical relation between the zeta potential and the pH for kaolinite is currently applied to analyze the nonlinearity of the EOF. A new perspective for theoretical determination of the zeta potential for the variable charge soil is proposed in this study. The prediction model incorporates the pH, the valence and concentration of the electrolyte, and the temperature and permittivity of the solvent surrounding the clay particles. Satisfying agreement between the calculated and measured curves of zeta potential versus pH for three types of variable charge soil was achieved. This model would act as a useful tool to simulate the nonlinearity of the electroosmosis of the variable charge soil and provide guidance and precise control mechanism for maximizing the efficiency of the EOF.
Collapse
Affiliation(s)
- Xiaojuan Yang
- Institute of Geotechnical Engineering, College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ge Shi
- Institute of Geotechnical Engineering, College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Chao Wu
- Institute of Geotechnical Engineering, College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Honglei Sun
- Institute of Geotechnical Engineering, College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
4
|
López-Vizcaíno R, Cabrera V, Sprocati R, Muniruzzaman M, Rolle M, Navarro V, Yustres Á. A modeling approach for electrokinetic transport in double-porosity media. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Simultaneous Release of Silver Ions and 10–Undecenoic Acid from Silver Iron–Oxide Nanoparticles Impregnated Membranes. MEMBRANES 2022; 12:membranes12060557. [PMID: 35736264 PMCID: PMC9227798 DOI: 10.3390/membranes12060557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/01/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023]
Abstract
The bio-medical benefits of silver ions and 10–undecenoic acid in various chemical-pharmaceutical preparations are indisputable, thus justifying numerous research studies on delayed and/or controlled release. This paper presents the effect of the polymer matrix in the simultaneous release of silver ions and 10–undecenoic acid in an aqueous medium of controlled pH and ionic strength. The study took into consideration polymeric matrices consisting of cellulose acetate (CA) and polysulfone (PSf), which were impregnated with oxide nanoparticles containing silver and 10–undecenoic acid. The studied oxide nanoparticles are nanoparticles of iron and silver oxides obtained by an accessible electrochemical method. The obtained results show that silver can be released, simultaneously with 10–undecenoic acid, from an impregnated polymeric membrane, at concentrations that ensure the biocidal and fungicidal capacity. Concentrations of active substances can be controlled by choosing the polymer matrix or, in some cases, by changing the pH of the target medium. In the studied case, higher concentrations of silver ions are released from the polysulfone matrix, while higher concentrations of 10–undecenoic acid are released from the cellulose acetate matrix. The results of the study show that a correlation can be established between the two released target substances, which is dependent on the solubility of the organic compound in the aqueous medium and the interaction of this compound with the silver ions. The ability of 10–undecenoic acid to interact with the silver ion, both through the carboxyl and alkene groups, contributes to the increase in the content of the silver ions transported in the aqueous medium.
Collapse
|
6
|
Sprocati R, Rolle M. On the interplay between electromigration and electroosmosis during electrokinetic transport in heterogeneous porous media. WATER RESEARCH 2022; 213:118161. [PMID: 35152137 DOI: 10.1016/j.watres.2022.118161] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/22/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Electrokinetic techniques represent a valuable approach to enhance solute transport, reactant delivery and contaminant degradation in complex environmental matrices, such as contaminated soil and groundwater, and have a great potential for the remediation of many organic and inorganic pollutants. This study investigates the complex interplay between the key electrokinetic transport mechanisms, electromigration and electroosmosis, in physically heterogeneous porous media and its impact on tracer distribution, reactant mixing and degradation efficiency. We perform experiments in a multidimensional setup, considering different types of heterogeneities, injected tracers and reactants, as well as background electrolyte pore water with different chemical composition and pH. We show that EK transport is significantly affected by the physical heterogeneities, due to the interaction between electrokinetic and hydraulic processes, and by the pore water chemistry that plays a key role on the magnitude and spatial distribution of electroosmotic fluxes. The latter affect the overall transport of charged and non-charged species, including the migration velocity of injected plumes, their spatial patterns, spreading and mixing with the background groundwater, and the extent of degradation and the spatio-temporal evolution of reactive zones in the heterogeneous porous media. Process-based numerical modeling allowed us to interpret the experimental observations and to disentangle the coupled effects of physical, chemical and electrostatic processes in the multidimensional, heterogeneous setups. Besides elucidating the mechanisms controlling electrokinetic transport, the results of this study have also important implications for practical field implementation of EK approaches in intrinsically heterogeneous subsurface systems.
Collapse
Affiliation(s)
- Riccardo Sprocati
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Building 115, 2800 Kgs, Lyngby, Denmark
| | - Massimo Rolle
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Building 115, 2800 Kgs, Lyngby, Denmark.
| |
Collapse
|
7
|
Rolle M, Albrecht M, Sprocati R. Impact of solute charge and diffusion coefficient on electromigration and mixing in porous media. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 244:103933. [PMID: 34872016 DOI: 10.1016/j.jconhyd.2021.103933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
The application of electrokinetic techniques in porous media has great potential to enhance mass transfer rates and, thus, to mobilize contaminants and effectively deliver reactants and amendments. However, the transport mechanisms induced by the application of an external electric field are complex and entail the coupling of physical, chemical and electrostatic processes. In this study we focus on electromigration and we provide experimental evidence of the impact of compound-specific properties, such as the aqueous diffusivity and the valence of charged species, on the macroscopic electrokinetic transport. We performed a series of multidimensional experiments considering the displacement of three different tracer plumes (i.e., permanganate, allura red and new coccine) in different background electrolyte solutions. The outcomes of the experiments clearly show that both the compound-specific diffusivity and the charge of the injected and resident ions impact the transport of the selected color tracer plumes, whose evolution was monitored with image analysis. The investigated experimental scenarios led to distinct plume behavior characterized by different mass distribution, average displacement velocities, longitudinal and lateral plume spreading, shape of the invading and receding fronts, as well as dilution of the injected solutes. A numerical simulator, based on the Nernst-Planck-Poisson equations and on aqueous speciation reactions in the pore water, allowed us to quantitatively interpret the experimental results, to capture the observed patterns of plume evolution, and to illuminate the coupling between the governing physico-chemical mechanisms and the controlling role of small scale compound-specific and electrostatic properties. Finally, the model was also extended to a typical configuration of in situ electrokinetic remediation of contaminated groundwater to show the impact of such mechanisms at larger scale.
Collapse
Affiliation(s)
- Massimo Rolle
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kgs. Lyngby, Denmark.
| | - Marina Albrecht
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kgs. Lyngby, Denmark
| | - Riccardo Sprocati
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|