1
|
Wang M, Muhich BA, He Z, Yang Z, Yang D, Lucero M, Nguyen HKK, Sterbinsky GE, Árnadóttir L, Zhou H, Fei L, Feng Z. Metal Doping Regulates Electrocatalysts Restructuring During Oxygen Evolution Reaction. CHEMSUSCHEM 2024; 17:e202400332. [PMID: 38728628 DOI: 10.1002/cssc.202400332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/24/2024] [Accepted: 05/10/2024] [Indexed: 05/12/2024]
Abstract
High-efficiency and low-cost catalysts for oxygen evolution reaction (OER) are critical for electrochemical water splitting to generate hydrogen, which is a clean fuel for sustainable energy conversion and storage. Among the emerging OER catalysts, transition metal dichalcogenides have exhibited superior activity compared to commercial standards such as RuO2, but inferior stability due to uncontrolled restructuring with OER. In this study, we create bimetallic sulfide catalysts by adapting the atomic ratio of Ni and Co in CoxNi1-xSy electrocatalysts to investigate the intricate restructuring processes. Surface-sensitive X-ray photoelectron spectroscopy and bulk-sensitive X-ray absorption spectroscopy confirmed the favorable restructuring of transition metal sulfide material following OER processes. Our results indicate that a small amount of Ni substitution can reshape the Co local electronic structure, which regulates the restructuring process to optimize the balance between OER activity and stability. This work represents a significant advancement in the development of efficient and noble metal-free OER electrocatalysts through a doping-regulated restructuring approach.
Collapse
Affiliation(s)
- Maoyu Wang
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, United States
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, United States
| | - Brian A Muhich
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, United States
| | - Zizhou He
- Chemical Engineering Department, University of Louisiana at Lafayette, Lafayette, LA 70504, United States
| | - Zhenzhen Yang
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, United States
| | - Dongqi Yang
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, United States
| | - Marcos Lucero
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, United States
| | - Hoan Kim Khai Nguyen
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, United States
| | - George E Sterbinsky
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, United States
| | - Líney Árnadóttir
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, United States
| | - Hua Zhou
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, United States
| | - Ling Fei
- Chemical Engineering Department, University of Louisiana at Lafayette, Lafayette, LA 70504, United States
| | - Zhenxing Feng
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, United States
| |
Collapse
|
2
|
Yuan X, Hao W, Teng Y, Zhang H, Han C, Zhang X, Li Z, Ibhadon AO, Teng F. Effect of multi-interface electron transfer on water splitting and an innovative electrolytic cell for synergistic hydrogen production and degradation. CHEMOSPHERE 2024; 356:141929. [PMID: 38604520 DOI: 10.1016/j.chemosphere.2024.141929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
The cleaning and utilization of industry wastewater are still a big challenge. In this work, we mainly investigate the effect of electron transfer among multi-interfaces on water electrolysis reaction. Typically, the CoS2, Co3S4/CoS2 (designated as CS4-2) and Co3S4/Co9S8/CoS2 (designated as CS4-8-2) samples are prepared on a large scale by one-step molten salt method. It is found that because of the different work functions (designated as WF; WF(Co3S4) = 4.48eV, WF(CoS2) = 4.41eV, WF(Co9S8) = 4.18 eV), the effective heterojunctions at the multi-interfaces of CS4-8-2 sample, which obviously improve interface charge transfer. Thus, the CS4-8-2 sample shows an excellent oxygen evolution reaction (OER) activity (134 mV/10 mA cm-2, 40 mV dec-1). The larger double-layer capacitance (Cdl = 17.1 mF cm-2) of the CS4-8-2 sample indicates more electrochemical active sites, compared to the CoS2 and CS4-2 samples. Density functional theory (DFT) calculation proves that due to interface polarization under electric field, the multi-interfaces effectively promote electron transfer and regulate electron structure, thus promoting the adsorption of OH- and dissociation of H2O. Moreover, an innovative norfloxacin (NFX) electrolytic cell (EC) is developed through introducing NFX into the electrolyte, in which efficient NFX degradation and hydrogen production are synergistically achieved. To reach 50 mA cm-2, the required cell voltage of NFX-EC has decreased by 35.2%, compared to conventional KOH-EC. After 2h running at 1 V, 25.5% NFX was degraded in the NFX EC. This innovative NFX-EC is highly energy-efficient, which is promising for the synergistic cleaning and utilization of industry wastewater.
Collapse
Affiliation(s)
- Xinjing Yuan
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Joint International Research Laboratory of Climate and Environment Change (ILCEC), Jiangsu Engineering and Technology Research Center of Environmental Cleaning Materials (ECM), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 19 Ningliu Road, Nanjing 210044, China; Donghai Laboratory, Zhoushan, 316021, China
| | - Weiyi Hao
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Joint International Research Laboratory of Climate and Environment Change (ILCEC), Jiangsu Engineering and Technology Research Center of Environmental Cleaning Materials (ECM), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 19 Ningliu Road, Nanjing 210044, China
| | - Yiran Teng
- Nanjing Software Research Institute of China United Network Communications Co., Ltd, 230 Lushan Road, Nanjing 210004, China
| | - Hanming Zhang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Joint International Research Laboratory of Climate and Environment Change (ILCEC), Jiangsu Engineering and Technology Research Center of Environmental Cleaning Materials (ECM), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 19 Ningliu Road, Nanjing 210044, China
| | - Chengyue Han
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Joint International Research Laboratory of Climate and Environment Change (ILCEC), Jiangsu Engineering and Technology Research Center of Environmental Cleaning Materials (ECM), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 19 Ningliu Road, Nanjing 210044, China
| | - Xinyu Zhang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Joint International Research Laboratory of Climate and Environment Change (ILCEC), Jiangsu Engineering and Technology Research Center of Environmental Cleaning Materials (ECM), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 19 Ningliu Road, Nanjing 210044, China
| | - Zhihui Li
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Joint International Research Laboratory of Climate and Environment Change (ILCEC), Jiangsu Engineering and Technology Research Center of Environmental Cleaning Materials (ECM), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 19 Ningliu Road, Nanjing 210044, China
| | - Alex O Ibhadon
- Department of Chemical Engineering, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - Fei Teng
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Joint International Research Laboratory of Climate and Environment Change (ILCEC), Jiangsu Engineering and Technology Research Center of Environmental Cleaning Materials (ECM), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 19 Ningliu Road, Nanjing 210044, China; Donghai Laboratory, Zhoushan, 316021, China.
| |
Collapse
|
3
|
Mo-Doped Cu2S Multilayer Nanosheets Grown In Situ on Copper Foam for Efficient Hydrogen Evolution Reaction. Molecules 2022; 27:molecules27185961. [PMID: 36144696 PMCID: PMC9501039 DOI: 10.3390/molecules27185961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Metal sulfide electrocatalyst is developed as a cost-effective and promising candidate for hydrogen evolution reaction (HER). In this work, we report a novel Mo-doped Cu2S self-supported electrocatalyst grown in situ on three-dimensional copper foam via a facile sulfurization treatment method. Interestingly, Mo-Cu2S nanosheet structure increases the electrochemically active area, and the large fleecy multilayer flower structure assembled by small nanosheet facilitates the flow of electrolyte in and out. More broadly, the introduction of Mo can adjust the electronic structure, significantly increase the volmer step rate, and accelerate the reaction kinetics. As compared to the pure Cu2S self-supported electrocatalyst, the Mo-Cu2S/CF show much better alkaline HER performance with lower overpotential (18 mV at 10 mA cm−2, 322 mV at 100 mA cm−2) and long-term durability. Our work constructs a novel copper based in-situ metal sulfide electrocatalysts and provides a new idea to adjust the morphology and electronic structure by doping for promoting HER performance.
Collapse
|
4
|
Malik B, Majumder S, Lorenzi R, Perelshtein I, Ejgenberg M, Paleari A, Nessim GD. Promising Electrocatalytic Water and Methanol Oxidation Reaction Activity by Nickel Doped Hematite/Surface Oxidized Carbon Nanotubes Composite Structures. Chempluschem 2022; 87:e202200036. [PMID: 35499139 DOI: 10.1002/cplu.202200036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/04/2022] [Indexed: 11/11/2022]
Abstract
Tailoring the precise construction of non-precious metals and carbon-based heterogeneous catalysts for electrochemical oxygen evolution reaction (OER) and methanol oxidation reaction (MOR) is crucial for energy conversion applications. Herein, this work reports the composite of Ni doped Fe2 O3 (Ni-Fe2 O3 ) with mildly oxidized multi-walled CNT (O-CNT) as an outstanding Mott-Schottky catalyst for OER and MOR. O-CNT acts as a co-catalyst which effectively regulates the charge transfer in Ni-Fe2 O3 and thus enhances the electrocatalytic performance. Ni-Fe2 O3 /O-CNT exhibits a low onset potential of 260 mV and overpotential 310 mV @ 10 mA cm-2 for oxygen evolution. Being a Mott-Schottky catalyst, it achieves the higher flat band potential of -1.15 V with the carrier density of 0.173×1024 cm-3 . Further, in presence of 1 M CH3 OH, it delivers the MOR current density of 10 mA cm-2 at 1.46 V vs. RHE. The excellent electrocatalytic OER and MOR activity of Ni-Fe2 O3 /O-CNT could be attributed to the synergistic interaction between Ni-doped Fe2 O3 and O-CNT.
Collapse
Affiliation(s)
- Bibhudatta Malik
- Department of Chemistry and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - Sumit Majumder
- Department of Chemistry and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - Roberto Lorenzi
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125, Milano, Italy
| | - Ilana Perelshtein
- Department of Chemistry and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - Michal Ejgenberg
- Department of Chemistry and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - Alberto Paleari
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125, Milano, Italy
| | - Gilbert Daniel Nessim
- Department of Chemistry and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, 52900, Israel
| |
Collapse
|