1
|
Cheng X, Zhang L, Li L, Wu H, Zheng J, Sun J, Li G. One-Step Hydrothermal Synthesis of Glucose-Induced Low Crystallinity NiCo-Based Layered Double Hydroxides for High-Performance Asymmetric Supercapacitors. Chemistry 2025; 31:e202403439. [PMID: 39639803 DOI: 10.1002/chem.202403439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 12/07/2024]
Abstract
In order to improve the electrochemical performance of NiCo-based layered double hydroxide (NiCoLDH), the synthesis of low-crystallinity NiCoLDH was induced by the adsorption of glucose and NiCoLDH. The results showed that glucose could not only effectively regulate the pore structure and morphology of NiCoLDH, but also had a regular effect on crystallinity. Pure phase NiCoLDH had higher crystallinity. When the mass of glucose is 0.05 g, the prepared NiCoLDH-0.05 is a short-range ordered structure embedded in the amorphous matrix. The crystallinity of the product decreases further with the further increase of glucose mass. Since the ordered structures have higher electrical conductivity, and amorphous structures have more defects and active sites, the structure of NiCoLDH-0.05 is conducive to achieving the best electrochemical performance. Electrochemical test results show that NiCoLDH-0.05 has a high specific capacitance, about 12 times that of the pure phase NiCoLDH, the mass of glucose is higher than or below 0.05 g, the specific capacitance will be further reduced. NiCoLDH-0.05 and activated carbon assembled into an asymmetric supercapacitor have a power density of 400 W kg-1 at an energy density of 32.7 Wh kg-1. This study provides a new idea for obtaining excellent electrochemical properties by adjusting LDH crystallinity.
Collapse
Affiliation(s)
- Xiaoyang Cheng
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyuan, 030032, People's Republic of China
| | - Lihua Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyuan, 030032, People's Republic of China
| | - Lingyan Li
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyuan, 030032, People's Republic of China
| | - Hao Wu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyuan, 030032, People's Republic of China
| | - Jinfeng Zheng
- Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Minstry of Education, Shanxi Datong University, Datong, 037009, People's Republic of China
| | - Jiao Sun
- Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Minstry of Education, Shanxi Datong University, Datong, 037009, People's Republic of China
| | - Guifang Li
- Key Laboratory of Energy Cleaning Utilization, Development, Cleaning Combustion and Energy Utilization Research Center of Fujian Province, Xiamen Key Laboratory of Marine Corrosion and Smart Protective Materials, College of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen, 361021, People's Republic of China
| |
Collapse
|
2
|
Wu Q, Li F, Sheng H, Qi Y, Yuan J, Bi H, Li W, Xie E, Lan W. In Situ Fabrication of Hierarchical CuO@CoNi-LDH Composite Structures for High-Performance Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38669688 DOI: 10.1021/acsami.4c01533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Layered double hydroxide (LDH) materials, despite their high theoretical capacity, exhibit significant performance degradation with increasing load due to their low conductivity. Simultaneously achieving both high capacity and high rate performance is challenging. Herein, we fabricated vertically aligned CuO nanowires in situ on the copper foam (CF) substrate by alkali-etching combined with the annealing process. Using this as a skeleton, electrochemical deposition technology was used to grow the amorphous α-phase CoNi-LDH nanosheets on its surface. Thanks to the high specific surface area of the CuO skeleton, ultrahigh loading (̃16.36 mg cm-2) was obtained in the fabricated CF/CuO@CoNi-LDH electrode with the cactus-like hierarchical structure, which enhanced the charge transfer and ion diffusion dynamics. The CF/CuO@CoNi-LDH electrode achieved a good combination of high areal capacitance (33.5 F cm-2) and high rate performance (61% capacitance retention as the current density increases 50 times). The assembled asymmetric supercapacitor device demonstrated a maximum potential window of 0-1.6 V and an energy density of 1.7 mWh cm-2 at a power density of 4 mW cm-2. This work provides a feasible strategy for the design and fabrication of high-mass-loading LDH composites for electrochemical energy storage applications.
Collapse
Affiliation(s)
- Qiyuan Wu
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Fengfeng Li
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Hongwei Sheng
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Yifeng Qi
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Jiao Yuan
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
- School of Physics and Electronic Information Engineering, Qinghai Normal University, Xining, Qinghai 810008, People's Republic of China
| | - Huasheng Bi
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Wenquan Li
- School of Physics and Electronic Information Engineering, Qinghai Normal University, Xining, Qinghai 810008, People's Republic of China
| | - Erqing Xie
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Wei Lan
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| |
Collapse
|
3
|
Liang J, Qin S, Luo S, Pan D, Xu P, Li J. Honeycomb porous heterostructures of NiMo layered double hydroxide nanosheets anchored on CoNi metal-organic framework nano-blocks as electrodes for asymmetric supercapacitors. J Colloid Interface Sci 2024; 653:504-516. [PMID: 37729758 DOI: 10.1016/j.jcis.2023.09.086] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
Abstract
Supercapacitors (SCs) have the advantages of high power density, long cycle life, and fast charging/discharging rates, but relatively low energy density limits their practical application prospects. The key to improving the energy density of supercapacitors is to develop electrode materials with excellent performance. Metal-organic frameworks (MOFs) used for electrochemical energy storage have emerged as a research hotspot due to their adjustable microstructure, porosity, and high specific surface area. To address the demands of high-performance supercapacitors, composite nanomaterials can be prepared by rationally designing MOFs. Herein, CoNi-MOF nano-blocks are grown on the carbon cloth, and ultrathin NiMo layered double hydroxides (NiMo-LDH) nanosheets are further anchored on its surfaces to form a honeycomb porous heterostructure (NiMo-LDH@CoNi-MOF). The porous heterostructures increase the electrochemically active specific surface area and shorten the charge transfer distance, possessing ultra-high capacitance of 15.6 F/cm2 at 1 mA/cm2. Furthermore, utilizing annealed activated carbon cloth (AAC) as the negative electrode, the assembled NiMo-LDH@CoNi-MOF-2//AAC asymmetric supercapacitor possesses an energy density of 1.10 mWh/cm2 at a power density of 4 mW/cm2, and a capacitance retention of 97.8 % after 10,000 cycles. This material exhibits distinctive nanostructures and favorable electrochemical characteristics, providing a unique idea for preparing supercapacitors with high energy density and power density.
Collapse
Affiliation(s)
- Jianying Liang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Shumin Qin
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Shuang Luo
- Department of Materials Science & Engineering, City University of Hong Kong, Kowloon Tong 999077, Hong Kong, China
| | - Die Pan
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Pengfei Xu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Jien Li
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
4
|
Shang W, Wang H, Yu W, He Y, Ma Y, Wu Z, Tan P. Transforming the Electrochemical Behaviors of Cobalt Oxide from "Supercapacitator" to "Battery" by Atomic-Level Structure Engineering for Inspiring the Advance of Co-Based Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300647. [PMID: 36919635 DOI: 10.1002/smll.202300647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/18/2023] [Indexed: 06/15/2023]
Abstract
Cobalt-based electrodes receive emerging attention for their high theoretical capacity and rich valence variation ability, but state-of-the-art cobalt-based electrodes present performance far below the theoretical value. Herein, the in-depth reaction mechanisms in the alkaline electrolyte are challenged and proven to be prone to the surface-redox pseudocapacitor behavior due to the low adsorption energy to OH. Using the atomic-level structure engineering strategy after substitution metal searching, the adsorption energy is effectively enhanced, and the peak of CoOOH can be observed from in situ characterization for the first time, leading to the successful transition of charge storage behavior from "supercapacitor" to "battery". When used in a Zn-Co battery as a proof of concept, it shows comprehensive electrochemical performance with a flat discharge voltage plateau of ≈1.7 V, an optimal energy density of 506 Wh kg-1 , and a capacity retention ratio of 85.1% after 2000 cycles, shining among the reported batteries. As a practical demonstration, this battery also shows excellent self-discharge performance with the capacity retention of 90% after a 10 h delay. This work subtly tunes the intrinsic electrochemical properties of the cobalt-based material through atomic-level structure engineering, opening a new opportunity for the advance of energy storage systems.
Collapse
Affiliation(s)
- Wenxu Shang
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China (USTC), Hefei, Anhui, 230026, China
- Deep Space Exploration Laboratory, Hefei, Anhui, 230026, China
| | - Huan Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Wentao Yu
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China (USTC), Hefei, Anhui, 230026, China
| | - Yi He
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China (USTC), Hefei, Anhui, 230026, China
| | - Yanyi Ma
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China (USTC), Hefei, Anhui, 230026, China
| | - Zhen Wu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Peng Tan
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China (USTC), Hefei, Anhui, 230026, China
| |
Collapse
|
5
|
Jiao Z, Chen Y, Du M, Demir M, Yan F, Xia W, Zhang Y, Wang C, Gu M, Zhang X, Zou J. 3D hollow NiCo LDH nanocages anchored on 3D CoO sea urchin-like microspheres: A novel 3D/3D structure for hybrid supercapacitor electrodes. J Colloid Interface Sci 2023; 633:723-736. [PMID: 36508396 DOI: 10.1016/j.jcis.2022.11.131] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
The research on the structure of advanced electrode materials is significant in the field of supercapacitors. Herein, for the first time, we propose a novel 3D/3D composite structure by a multi-step process, in which 3D hollow NiCo LDH nanocages are immobilized on 3D sea urchin-like CoO microspheres. Results show that the 3D CoO acts as an efficient and stable channel for ion diffusion, while the hollow NiCo LDH provides abundant redox-active sites. The calculated results based on density function theory (DFT) show that the CoO@NiCo LDH heterostructure has an enhanced density of states (DOS) near the Fermi level and strong adsorption capacity for OH-, indicating its excellent electrical conductivity and electrochemical reaction kinetics. As a result, the CoO@NiCo LDH electrode has an areal specific capacity of 4.71C cm-2 at a current density of 3 mA cm-2 (440.19C g-1 at 0.28 A g-1) and can still maintain 88.76 % of the initial capacitance after 5000 cycles. In addition, the assembled hybrid supercapacitor has an energy density of 5.59 mWh cm-3 at 39.54 mW cm-3.
Collapse
Affiliation(s)
- Zhichao Jiao
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Yuanqing Chen
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China.
| | - Miao Du
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Muslum Demir
- Department of Chemical Engineering, Osmaniye Korkut Ata University, Osmaniye 80000, Turkey
| | - Fuxue Yan
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Weimin Xia
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Ying Zhang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Cheng Wang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Mengmeng Gu
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Xiaoxuan Zhang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Juntao Zou
- Engineering Research Center of Conducting Materials and Composite Technology, Ministry of Education, Xi'an University of Technology, Xi'an 710048, China; Shaanxi Province Key Laboratory of Electrical Materials and Infiltration Technology, Xi'an University of Technology, Xi'an 710048, China
| |
Collapse
|
6
|
Diao H, Jia M, Zhao N, Guo X. LiNi 0.6Co 0.2Mn 0.2O 2 Cathodes Coated with Dual-Conductive Polymers for High-Rate and Long-Life Solid-State Lithium Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24929-24937. [PMID: 35594362 DOI: 10.1021/acsami.2c03618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-energy density and safe solid lithium batteries call for cathodes with high capacity and good kinetic properties. In this work, LiNi0.6Co0.2Mn0.2O2 (NCM622) cathodes are coated with the ionic-electronic dual-conductive polymers composed of poly(ethylene glycol) (PEG)-doped polyaniline (PANI). Scanning electron microscopy, transmission electron microscopy, Fourier transform infrared, and thermogravimetric analysis reveal that the dual-conductive polymers are homogeneously coated on the surfaces of NCM622 cathodes with a thickness of approximately 10 nm. The solid-state lithium batteries consisting of the NCM622 cathodes coated with PANI-PEG show a specific capacity of 158 mA h g-1 and a retention rate of 88% after 100 cycles at the rate of 0.1 C and room temperature, which are superior to the discharge capacity of 153 mA h g-1 and capacity retention of 59% after 100 cycles for the batteries with the pristine NCM622 cathodes. Moreover, the cells with the coated cathodes display a better rate performance of 84 mA h g-1 at 1 C than those with the uncoated ones which show a rate performance of 11 mA h g-1 at 1 C.
Collapse
Affiliation(s)
- Honghui Diao
- College of Physics, Qingdao University, Qingdao 266071, China
| | - Mengyang Jia
- College of Physics, Qingdao University, Qingdao 266071, China
| | - Ning Zhao
- College of Physics, Qingdao University, Qingdao 266071, China
| | - Xiangxin Guo
- College of Physics, Qingdao University, Qingdao 266071, China
| |
Collapse
|
7
|
Roberto de Oliveira P, Kalinke C, Alves Bonacin J, Malaspina O, Cornélio Ferreira Nocelli R, Campos Janegitz B. Propolis green biofilm for the immobilization of carbon nanotubes and metallic ions: Development of redox catalysts. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Jin D, Zhou J, Yang T, Li S, Wang L, Cai Y, Wang L. Synthesis and Study on Ni-Co Phosphite/Activated Carbon Fabric Composited Materials with Controllable Nano-Structure for Hybrid Super-Capacitor Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1649. [PMID: 34201582 PMCID: PMC8304602 DOI: 10.3390/nano11071649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 12/04/2022]
Abstract
The advantage of low resistivity and inactive binders makes binder-free electrode an excellent candidate for high-performance energy devices. A simple hydrothermal method was used to fabricate M11(HPO3)8(OH)6 (M: Ni and Co) (MHP) arrays combined with activated carbon fabric (ACF) without binder. The structures of MHP can be easily tuned from bouquets to nano-sheets by the concentration of NaH2PO2. The MHP/ACF composite materials with different structures showed the typical battery-type characteristic of anodic electrodes. In a three-electrode cell configuration, the MHP nano-sheet arrays/ACF composite has a higher capacity, of 1254 F/g, at a scan rate of 10 mA/cm2 and shows better cycling stability: 84.3% remaining specific capacity after 1000 cycles of charge-discharge measurement. The composite is highly flexible, with almost the same electrochemical performance under stretching mode. The MHP/ACF composite@ACF hybrid supercapacitor can deliver the highest energy density, of 34.1 Wh·kg-1, and a power density of 722 W·kg-1 at 1 A·g-1. As indicated by the results, MHP/ACF composite materials are excellent binder-free electrodes, candidates for flexible high-performance hybrid super-capacitor devices.
Collapse
Affiliation(s)
- Dalai Jin
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Town, Hangzhou 310018, China; (D.J.); (L.W.)
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Xiasha Town, Hangzhou 310018, China; (J.Z.); (T.Y.); (S.L.); (Y.C.)
| | - Jiamin Zhou
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Xiasha Town, Hangzhou 310018, China; (J.Z.); (T.Y.); (S.L.); (Y.C.)
| | - Tianpeng Yang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Xiasha Town, Hangzhou 310018, China; (J.Z.); (T.Y.); (S.L.); (Y.C.)
| | - Saisai Li
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Xiasha Town, Hangzhou 310018, China; (J.Z.); (T.Y.); (S.L.); (Y.C.)
| | - Lina Wang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Town, Hangzhou 310018, China; (D.J.); (L.W.)
| | - Yurong Cai
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Xiasha Town, Hangzhou 310018, China; (J.Z.); (T.Y.); (S.L.); (Y.C.)
| | - Longcheng Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Xiasha Town, Hangzhou 310018, China; (J.Z.); (T.Y.); (S.L.); (Y.C.)
| |
Collapse
|
9
|
Ren K, Liu Z, Wei T, Fan Z. Recent Developments of Transition Metal Compounds-Carbon Hybrid Electrodes for High Energy/Power Supercapacitors. NANO-MICRO LETTERS 2021; 13:129. [PMID: 34138344 PMCID: PMC8128967 DOI: 10.1007/s40820-021-00642-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/21/2021] [Indexed: 05/13/2023]
Abstract
Due to their rapid power delivery, fast charging, and long cycle life, supercapacitors have become an important energy storage technology recently. However, to meet the continuously increasing demands in the fields of portable electronics, transportation, and future robotic technologies, supercapacitors with higher energy densities without sacrificing high power densities and cycle stabilities are still challenged. Transition metal compounds (TMCs) possessing high theoretical capacitance are always used as electrode materials to improve the energy densities of supercapacitors. However, the power densities and cycle lives of such TMCs-based electrodes are still inferior due to their low intrinsic conductivity and large volume expansion during the charge/discharge process, which greatly impede their large-scale applications. Most recently, the ideal integrating of TMCs and conductive carbon skeletons is considered as an effective solution to solve the above challenges. Herein, we summarize the recent developments of TMCs/carbon hybrid electrodes which exhibit both high energy/power densities from the aspects of structural design strategies, including conductive carbon skeleton, interface engineering, and electronic structure. Furthermore, the remaining challenges and future perspectives are also highlighted so as to provide strategies for the high energy/power TMCs/carbon-based supercapacitors.
Collapse
Affiliation(s)
- Kang Ren
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Zheng Liu
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China.
| | - Tong Wei
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Zhuangjun Fan
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China.
| |
Collapse
|
10
|
Mevada C, Mukhopadhyay M. Limitations and Recent Advances in High Mass Loading Asymmetric Supercapacitors Based on Pseudocapacitive Materials. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c04811] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chirag Mevada
- Department of Chemical Engineering, S. V. National Institute of Technology, Surat, Gujarat 395007, India
| | - Mausumi Mukhopadhyay
- Department of Chemical Engineering, S. V. National Institute of Technology, Surat, Gujarat 395007, India
| |
Collapse
|