1
|
Eiler K, Pané S, Döbeli M, Müller A, Vockenhuber C, Sort J, Pellicer E. Electrosynthesis-Induced Pt Skin Effect in Mesoporous Ni-Rich Ni-Pt Thin Films for Hydrogen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42305-42311. [PMID: 39092459 PMCID: PMC11331433 DOI: 10.1021/acsami.4c09288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
A Pt skin effect, i.e., an enrichment of Pt within the first 1-2 nm from the surface, is observed in as-prepared electrodeposited Ni-rich Ni-Pt thin films. This effect, revealed by Rutherford backscattering (RBS), is present for both dense thin films and mesoporous thin films synthesized by micelle-assisted electrodeposition from a chloride-based electrolyte. Due to the Pt skin effect, the Ni-rich thin films show excellent stability at the hydrogen evolution reaction (HER) in acidic media, during which a gradient in the Pt/Ni ratio is established along the thickness of the thin films, while the activity at the HER remains unaffected by this structural change. Further characterization by elastic recoil detection with He ions analysis shows that hydrogen profiles are similar to those of Pt: a surface hydrogen peak coincides with the Pt skin, and a gradient in hydrogen concentration is established during HER in acidic media, together with a considerable uptake in hydrogen. A comparative study shows that in alkaline media, hydrogen evolution has little to no effect on the structural properties of the thin films, even for much longer times of exposure. The mesoporous thin films, in addition to their higher efficiency at HER compared to dense thin films, also show lower internal stress, as determined by Rietveld refinement of grazing incidence X-ray diffraction patterns. The latter also reveal a fully single-phase and nanocrystalline structure for all thin films with varying Ni contents.
Collapse
Affiliation(s)
- Konrad Eiler
- Departament
de Física, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Spain
| | - Salvador Pané
- Institute
of Robotics and Intelligent Systems (IRIS), ETH Zurich, CH-8092 Zurich, Switzerland
| | - Max Döbeli
- Laboratory
of Ion Beam Physics, ETH Zurich, Otto-Stern-Weg 5, CH-8093 Zurich, Switzerland
| | - Arnold Müller
- Laboratory
of Ion Beam Physics, ETH Zurich, Otto-Stern-Weg 5, CH-8093 Zurich, Switzerland
| | - Christof Vockenhuber
- Laboratory
of Ion Beam Physics, ETH Zurich, Otto-Stern-Weg 5, CH-8093 Zurich, Switzerland
| | - Jordi Sort
- Departament
de Física, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Eva Pellicer
- Departament
de Física, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
2
|
Nacys A, Simkunaitė D, Balciunaite A, Zabielaite A, Upskuviene D, Levinas R, Jasulaitiene V, Kovalevskij V, Simkunaite-Stanyniene B, Tamasauskaite-Tamasiunaite L, Norkus E. Pt-Coated Ni Layer Supported on Ni Foam for Enhanced Electro-Oxidation of Formic Acid. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6427. [PMID: 37834564 PMCID: PMC10573893 DOI: 10.3390/ma16196427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
A Pt-coated Ni layer supported on a Ni foam catalyst (denoted PtNi/Nifoam) was investigated for the electro-oxidation of the formic acid (FAO) in acidic media. The prepared PtNi/Nifoam catalyst was studied as a function of the formic acid (FA) concentration at bare Pt and PtNi/Nifoam catalysts. The catalytic activity of the PtNi/Nifoam catalysts, studied on the basis of the ratio of the direct and indirect current peaks (jd)/(jnd) for the FAO reaction, showed values approximately 10 times higher compared to those on bare Pt, particularly at low FA concentrations, reflecting the superiority of the former catalysts for the electro-oxidation of FA to CO2. Ni foams provide a large surface area for the FAO, while synergistic effects between Pt nanoparticles and Ni-oxy species layer on Ni foams contribute significantly to the enhanced electro-oxidation of FA via the direct pathway, making it almost equal to the indirect pathway, particularly at low FA concentrations.
Collapse
Affiliation(s)
- Antanas Nacys
- Center for Physical Sciences and Technology (FTMC), LT-10257 Vilnius, Lithuania; (D.S.); (A.B.); (A.Z.); (D.U.); (R.L.); (V.J.); (V.K.); (B.S.-S.); (L.T.-T.)
| | | | | | | | | | | | | | | | | | | | - Eugenijus Norkus
- Center for Physical Sciences and Technology (FTMC), LT-10257 Vilnius, Lithuania; (D.S.); (A.B.); (A.Z.); (D.U.); (R.L.); (V.J.); (V.K.); (B.S.-S.); (L.T.-T.)
| |
Collapse
|
3
|
Electrochemistry at Krakowian research institutions. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AbstractThe electrochemistry research team activity from Poland is marked by significant increase in the last 20 years. The joining of European Community in 2004 gives an impulse for the development of Polish science. The development of electrochemistry has been stimulated by cooperation with industry and the establishment of technology transfer centers, technology parks, business incubators, etc. and the mostly by simplified international collaborations. Five research institutions from Krakow reports work in the field of electrochemistry. The achievements of all teams are briefly described.
Collapse
|
4
|
PS-b-P4VP block copolymer micelles as a soft template to grow openly porous nickel films for alkaline hydrogen evolution. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
An Enhanced Oxidation of Formate on PtNi/Ni Foam Catalyst in an Alkaline Medium. CRYSTALS 2022. [DOI: 10.3390/cryst12030362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In this study, a platinum-coated Ni foam catalyst (denoted PtNi/Ni foam) was investigated for the oxidation of the formate reaction (FOR) in an alkaline medium. The catalyst was fabricated via a two-step procedure, which involved an electroless deposition of the Ni layer using sodium hypophosphite as a reducing agent and the subsequent electrodeposition of the platinum layer. The PtNi/Ni foam catalyst demonstrated enhanced electrocatalytic activity for the FOR in an alkaline medium compared to the Ni/Ni foam catalyst and pure Pt electrode. Moreover, the PtNi/Ni foam catalyst promoted the FOR at more negative potentials than the Pt electrode. This contributed to a significant negative shift in the onset potential, indicating the high activity of the catalyst. Notably, in alkaline media with the PtNi/Ni foam catalyst, the FOR proceeds via a direct pathway mechanism without significant accumulation of poisonous carbonaceous species on the PtNi/Ni foam catalyst.
Collapse
|
6
|
Serrà A, Artal R, Philippe L, Gómez E. Electrodeposited Ni-Rich Ni-Pt Mesoporous Nanowires for Selective and Efficient Formic Acid-Assisted Hydrogenation of Levulinic Acid to γ-Valerolactone. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4666-4677. [PMID: 33826345 PMCID: PMC8631738 DOI: 10.1021/acs.langmuir.1c00461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/26/2021] [Indexed: 06/12/2023]
Abstract
In pursuit of friendlier conditions for the preparation of high-value biochemicals, we developed catalytic synthesis of γ-valerolactone by levulinic acid hydrogenation with formic acid as the hydrogen source. Both levulinic and formic acid are intermediate products in the biomass transformation processes. The objective of the work is twofold: the development of a novel approach for milder synthesis conditions to produce γ-valerolactone and the reduction of the economic cost of the catalyst. Ni-rich Ni-Pt mesoporous nanowires were synthesized in an aqueous medium using a combined hard-soft-template-assisted electrodeposition method, in which porous polycarbonate membranes controlled the shape and the Pluronic P-123 copolymer served as the porogen agent. The electrodeposition conditions selected favored nickel deposition and generated nanowires with nickel percentages above 75 atom %. The increase in deposition potential favored nickel deposition. However, it was detrimental for the porous diameter because the mesoporous structure is promoted by the presence of the platinum-rich micelles near the substrate, which is not favored at more negative potentials. The prepared catalysts promoted the complete transformation to γ-valerolactone in a yield of around 99% and proceeded with the absence of byproducts. The coupling temperature and reaction time were optimized considering the energy cost. The threshold operational temperature was established at 140 °C, at which, 120 min was sufficient for attaining the complete transformation. Working temperatures below 140 °C rendered the reaction completion difficult. The Ni78Pt22 nanowires exhibited excellent reusability, with minimal nickel leaching into the reaction mixture, whereas those with higher nickel contents showed corrosion.
Collapse
Affiliation(s)
- Albert Serrà
- Laboratory
for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
- Grup
d’Electrodeposició de Capes Primes i Nanoestructures
(GE-CPN), Departament de Ciència de Materials i Química
Física, Universitat de Barcelona, Martí i Franquès,
1, E-08028 Barcelona, Catalonia, Spain
- Institute
of Nanoscience and Nanotechnology (INUB), Universitat de Barcelona, E-08028 Barcelona, Catalonia, Spain
| | - Raül Artal
- Laboratory
for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
- Grup
d’Electrodeposició de Capes Primes i Nanoestructures
(GE-CPN), Departament de Ciència de Materials i Química
Física, Universitat de Barcelona, Martí i Franquès,
1, E-08028 Barcelona, Catalonia, Spain
| | - Laetitia Philippe
- Laboratory
for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| | - Elvira Gómez
- Grup
d’Electrodeposició de Capes Primes i Nanoestructures
(GE-CPN), Departament de Ciència de Materials i Química
Física, Universitat de Barcelona, Martí i Franquès,
1, E-08028 Barcelona, Catalonia, Spain
- Institute
of Nanoscience and Nanotechnology (INUB), Universitat de Barcelona, E-08028 Barcelona, Catalonia, Spain
| |
Collapse
|