1
|
Tin-cobalt bimetals in 2D leaf-like MOF-derived carbon for advanced lithium storage applications. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
SiOx microparticles embedded into 3D wrinkled N, S co-doped multilayer graphene sheets as a high-performance anode for long-life full lithium-ion batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
3
|
Fang C, Liu J, Zhang X, Luo W, Zhang G, Li X, Liu Z, Yin P, Feng W. In Situ Formed Weave Cage-Like Nanostructure Wrapped Mesoporous Micron Silicon Anode for Enhanced Stable Lithium-Ion Battery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29726-29736. [PMID: 34137583 DOI: 10.1021/acsami.1c07898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The low-cost and high-capacity micron silicon is identified as the suitable anode material for high-performance lithium-ion batteries (LIBs). However, the particle fracture and severe capacity fading during electrochemical cycling greatly impede the practical application of LIBs. Herein, we first proposed an in situ reduction and template assembly strategy to attain a weave cage-like carbon nanostructure, composed of short carbon nanotubes and small graphene flakes, as a flexible nanotemplate that closely wrapped micron-sized mesoporous silicon (PSi) to form a robust composite construction. The in situ formed weave cage-like carbon nanostructure can remarkably improve the electrochemical property and structural stability of micron-sized PSi during deep galvanostatic cycling and high electric current density owing to multiple attractive advantages. As a result, the rechargeable LIB applying this anode material exhibits improved initial Coulombic efficiency (ICE), excellent rate performance, and cyclic stability in the existing micron-sized PSi/nanocarbon system. Moreover, this anode reached an approximation of 100% ICE after only three cycles and maintains this level in subsequent cycles. This design of flexible nanotemplated platform wrapped micron-sized PSi anode provides a steerable nanoengineering strategy toward conquering the challenge of long-term reliable LIB application.
Collapse
Affiliation(s)
- Chenhui Fang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jiaxing Liu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xiaofeng Zhang
- Institute of New Materials, Guangdong Academy of Science, Guangzhou 510650, P. R. China
| | - Wen Luo
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Guoqing Zhang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xinxi Li
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Zhongyun Liu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Pengfei Yin
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, P. R. China
| | - Wei Feng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, P. R. China
- Key Laboratory of Materials Processing and Mold Ministry of Education, Zhengzhou University, Zhengzhou 450002, P. R. China
| |
Collapse
|