1
|
Sarsenbayeva A, Sadak S, Kucuk I, Kudreyeva L, Bakytzhanovna AM, Uslu B. Molybdenum-Based Electrochemical Sensors for Breast Cancer Biomarker Detection: Advances and Challenges. Crit Rev Anal Chem 2025:1-21. [PMID: 40257753 DOI: 10.1080/10408347.2025.2487581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Breast cancer, which is considered the most common type of cancer among women worldwide, is estimated to reach 4.4 million cases in 2070. Early diagnosis has become very important to prevent this expected increase. Various traditional methods, such as mammography, biopsy, enzyme immunoassay (EI), liquid biopsy, immunohistochemistry (IGH), fluorescence in situ hybridization (FISH) are used to diagnose breast cancer, but the fact that these methods are very expensive, have low sensitivity, and cause mutations in tissues due to X-rays has led researchers to discover faster, more cost-effective, and easily detectable methods. In particular, increased levels of new blood-based biomarkers in the circulation can be detected sensitively and selectively by electrochemical methods to facilitate early disease screening and rapid diagnosis. This comprehensive review focuses on the prevalence and pathology of breast cancer, clinical diagnosis of breast cancer, and electrochemical sensors of molybdenum-based compounds for the detection of various breast cancer biomarkers in recent years. Electrochemical analysis studies carried out in the field in recent years are compiled and are considered as aptamer-based, nucleotide-based, and immunosensors. The chemical properties of molybdenum compounds are discussed, and the modifications of these compounds to the electrode surface are discussed under 4 headings: drop casting, electrodeposition, atomic layer deposition, and electrophoretic deposition.
Collapse
Affiliation(s)
- Aliya Sarsenbayeva
- Department of Analytical Chemistry, Colloidal Chemistry and Technology of Rare Elements, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Selenay Sadak
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
- The Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Ipek Kucuk
- The Graduate School of Health Sciences, Ankara University, Ankara, Turkey
- Department of Analytical Chemistry, Faculty of Pharmacy, Başkent University, Ankara, Turkey
| | - Leila Kudreyeva
- Department of Analytical Chemistry, Colloidal Chemistry and Technology of Rare Elements, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Abu Moldir Bakytzhanovna
- Department of Analytical Chemistry, Colloidal Chemistry and Technology of Rare Elements, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Bengi Uslu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
2
|
Jagathesan K, Roy S. Recent Development of Transition Metal Complexes as Chemotherapeutic Hypoxia Activated Prodrug (HAP). ChemMedChem 2024; 19:e202400127. [PMID: 38634306 DOI: 10.1002/cmdc.202400127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/19/2024]
Abstract
Hypoxia is a state characterized by low concentration of Oxygen. Hypoxic state is often found in the central region of solid tumors. Hypoxia is associated with abnormal neovascularization resulted in poor blood flow in tissues and increased proliferation of tumor cells, imbalance between O2 supply and O2 consumption in tumor cells, high concentration of proton and strong reducibility. And, these abnormalities enhance the survival potency of the hypoxic tumours and increase the resistance towards chemotherapy and radiotherapy. One of the approach for treating hypoxic region of tumour is to use reducing environment of hypoxic tumours for reducing a molecule (hypoxia activated prodrug, HAP) and as a result the active drug will be released in hypoxic region in a controlled manner from the prodrug and kill the hypoxic tumour. Co(III) and Pt(IV) complexes with monodentate active drug molecule in the axial position can be reduced to Co(II) and Pt(II) moieties and as a result, the axial ligands (active drug) could come out from the metal center and could show its anticancer activity. In this review we have highlighted the research articles where transition metal-based complexes are used as chemotherapeutic hypoxia activated prodrug molecules which are reported in last 5 years.
Collapse
Affiliation(s)
- K Jagathesan
- Dept. of Chemistry, School of Advance Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | - Sovan Roy
- Dept. of Chemistry, School of Advance Sciences, Vellore Institute of Technology, Vellore, 632014, India
| |
Collapse
|
3
|
Kondengadan SM, Wang B. Quantitative Factors Introduced in the Feasibility Analysis of Reactive Oxygen Species (ROS)-Sensitive Triggers. Angew Chem Int Ed Engl 2024; 63:e202403880. [PMID: 38630918 PMCID: PMC11192588 DOI: 10.1002/anie.202403880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/19/2024]
Abstract
Reactive oxygen species (ROS) are critical for cellular signaling. Various pathophysiological conditions are also associated with elevated levels of ROS. Hence, ROS-sensitive triggers have been extensively used for selective payload delivery. Such applications are predicated on two key functions: (1) a sufficient magnitude of concentration difference for the interested ROS between normal tissue/cells and intended sites and (2) appropriate reaction kinetics to ensure a sufficient level of selectivity for payload release. Further, ROS refers to a group of species with varying reactivity, which should not be viewed as a uniform group. In this review, we critically analyze data on the concentrations of different ROS species under various pathophysiological conditions and examine how reaction kinetics affect the success of ROS-sensitive linker chemistry. Further, we discuss different ROS linker chemistry in the context of their applications in drug delivery and imaging. This review brings new insights into research in ROS-triggered delivery, highlights factors to consider in maximizing the chance for success and discusses pitfalls to avoid.
Collapse
Affiliation(s)
- Shameer M. Kondengadan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
4
|
Liu Y, Lai H, Ming P, Chen P, Wang S, Zhai H. A ratiomectic aptasensor with enhanced signals based on peroxidase-like enzymes and NH 2-MIL-101@MoS 2 for trace detection of deoxynivalenol in traditional Chinese herbs. Food Chem 2024; 441:138381. [PMID: 38218150 DOI: 10.1016/j.foodchem.2024.138381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
The accumulation of the deoxynivalenol (DON) in the human body poses a significant health risk that is often overlooked, and we urgently need an ultra-sensitive rapid detection platform. Due to the porosity of NH2-MIL-101@MoS2, an increased loading of toluidine blue (TB) serves to create a signal reference. Cobalt@carbon (CoC) derived from metal organic frameworks was combined with NH2-MIL-101(NH2-MIL-101@CoC) to form an enzyme-free Nanoprobe (Apt-pro) with significant catalytic properties. The ratio (IBQ /ITB) was changed by varying the electrochemical signal of benzoquinone (BQ) (IBQ) and the amount of TB deposition (ITB). This aptasensor was successfully applied to detect DON in malt and peach seed, which exhibited a great linear range from 1 fg/mL to 10 ng/mL and low detection limit of 0.31 fg/mL for DON.
Collapse
Affiliation(s)
- Yongxin Liu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Haohong Lai
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Pingtao Ming
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Pengsheng Chen
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shumei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Haiyun Zhai
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Ming P, Niu Y, Liu Y, Wang J, Lai H, Zhou Q, Zhai H. An Electrochemical Sensor Based on Cu-MOF-199@MWCNTs Laden with CuNPs for the Sensitive Detection of Creatinine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13656-13667. [PMID: 37712412 DOI: 10.1021/acs.langmuir.3c01823] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
In this study, the synthesis of Cu-MOF-199@multiwalled carbon nanotubes (Cu-MOF-199@MWCNTs) composites was achieved and utilized to create an advanced electrochemical sensor for creatinine (Cre) detection. The composites were modified on a glassy carbon electrode surface through direct drip coating, followed by the deposition of copper nanoparticles (CuNPs) via constant potential deposition. Characterized by various techniques and electrochemical analyses, the Cu-MOF-199@MWCNTs composite increased the CuNPs load, improving the detection sensitivity for Cre. Under optimal conditions, the modified electrode exhibited good linearity across a broad range of Cre concentrations (0.05-40.0 μM) with a low detection limit of 11.3 nM. The developed sensor demonstrated remarkable stability, reproducibility, and selectivity, showing promise in sensitive and accurate Cre detection in serum samples.
Collapse
Affiliation(s)
- Pingtao Ming
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yuanyuan Niu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yongxin Liu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jinhao Wang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Haohong Lai
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qing Zhou
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Haiyun Zhai
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
6
|
Wang Y, Zulpya M, Zhang X, Xu S, Sun J, Dong B. Recent Advances of Metal-Organic Frameworks-based Nanozymes for Bio-applications. Chem Res Chin Univ 2022; 38:1324-1343. [DOI: 10.1007/s40242-022-2256-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
|
7
|
Yu Y, Pan M, Peng J, Hu D, Hao Y, Qian Z. A review on recent advances in hydrogen peroxide electrochemical sensors for applications in cell detection. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Zhao P, Chen S, Liang Y, Chen Y, Lan P, Huo D, Hou C. Metalloporphyrin Hemin Modified Carbon Nanotube Decorated Titanium Carbide with Redox Catalytic Ability for Electrochemical Determination of Hydrogen Peroxide and Uric Acid. J Colloid Interface Sci 2022; 628:456-466. [DOI: 10.1016/j.jcis.2022.07.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/18/2022] [Accepted: 07/30/2022] [Indexed: 10/16/2022]
|
9
|
Rojas D, Hernández-Rodríguez JF, Della Pelle F, Escarpa A, Compagnone D. New trends in enzyme-free electrochemical sensing of ROS/RNS. Application to live cell analysis. Mikrochim Acta 2022; 189:102. [DOI: 10.1007/s00604-022-05185-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/11/2022] [Indexed: 12/31/2022]
|
10
|
A New Anodic Electrochemiluminescence of Tris(2,2′- bipyridine)ruthenium(II) with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide as a Coreactant for Determination of Hydrogen peroxide. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Li H, Zhao H, Wang Z, Zhou F, Lan M. Facilely proposed PtCu-rGO bimetallic nanocomposites modified carbon fibers microelectrodes for detecting hydrogen peroxide released from living cells. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
12
|
Guo X, Lin C, Zhang M, Duan X, Dong X, Sun D, Pan J, You T. 2D/3D Copper-Based Metal-Organic Frameworks for Electrochemical Detection of Hydrogen Peroxide. Front Chem 2021; 9:743637. [PMID: 34692641 PMCID: PMC8530376 DOI: 10.3389/fchem.2021.743637] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/03/2021] [Indexed: 11/25/2022] Open
Abstract
Metal-organic frameworks (MOFs) have been extensively used as modified materials of electrochemical sensors in the food industry and agricultural system. In this work, two kinds of copper-based MOFs (Cu-MOFs) with a two dimensional (2D) sheet-like structure and three dimensional (3D) octahedral structure for H2O2 detection were synthesized and compared. The synthesized 2D and 3D Cu-MOFs were modified on the glassy carbon electrode to fabricate electrochemical sensors, respectively. The sensor with 3D Cu-MOF modification (HKUST-1/GCE) presented better electrocatalytic performance than the 2D Cu-MOF modified sensor in H2O2 reduction. Under optimal conditions, the prepared sensor displayed two wide linear ranges of 2 μM-3 mM and 3-25 mM and a low detection limit of 0.68 μM. In addition, the 3D Cu-MOF sensor exhibited good selectivity and stability. Furthermore, the prepared HKUST-1/GCE was used for the detection of H2O2 in milk samples with a high recovery rate, indicating great potential and applicability for the detection of substances in food samples. This work provides a convenient, practical, and low-cost route for analysis and extends the application range of MOFs in the food industry, agricultural and environmental systems, and even in the medical field.
Collapse
Affiliation(s)
- Xiangjian Guo
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chuyan Lin
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Minjun Zhang
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xuewei Duan
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiangru Dong
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Duanping Sun
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jianbin Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Tianhui You
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
13
|
Maduraiveeran G, Chen A. Design of an enzyme-mimicking NiO@Au nanocomposite for the sensitive electrochemical detection of lactic acid in human serum and urine. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137612] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|