1
|
Rafiq K, Sadia I, Abid MZ, Waleed MZ, Rauf A, Hussain E. Scientific Insights into the Quantum Dots (QDs)-Based Electrochemical Sensors for State-of-the-Art Applications. ACS Biomater Sci Eng 2024; 10:7268-7313. [PMID: 39499739 DOI: 10.1021/acsbiomaterials.4c01256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Size-dependent optical and electronic properties are unique characteristics of quantum dots (QDs). A significant advantage is the quantum confinement effect that allows their precise tuning to achieve required characteristics and behavior for the targeted applications. Regarding the aforementioned factors, QDs-based sensors have exhibited dramatic potential for the diverse and advanced applications. For example, QDs-based devices have been potentially utilized for bioimaging, drug delivery, cancer therapy, and environmental remediation. In recent years, use of QDs-based electrochemical sensors have been further extended in other areas like gas sensing, metal ion detection, monitoring of organic pollutants, and detection of radioactive isotopes. Objective of this study is to rationalize the QDs-based electrochemical sensors for state-of-the-art applications. This review article comprehensively illustrates the importance of aforementioned devices along with sources from which QDs devices have been formulated and fabricated. Other distinct features of QDs devices are associated with their extremely high active surfaces, inherent ability of reproducibility, sensitivity, and selectivity for the targeted analyte detection. In this review, major categories of QD materials along with justification of their key roles in electrochemical devices have been demonstrated and discussed. All categories have been evaluated with special emphasis on the advantages and drawbacks/challenges associated with QD materials. However, in the interests of readers and researchers, recent improvements also have been included and discussed. On the evaluation, it has been concluded that despite significant challenges, QDs-based electrochemical sensors exhibit excellent performances for state-of-the-art and targeted applications.
Collapse
Affiliation(s)
- Khezina Rafiq
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Iqra Sadia
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Zeeshan Abid
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Zaryab Waleed
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Abdul Rauf
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ejaz Hussain
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
2
|
Zhou Y, Xiao W, Tian G, Zhang S, Wei X, Li J. A photoelectrochemical sensor based on In 2O 3/In 2S 3/ZnIn 2S 4 ternary Z-scheme heterojunction for ultrasensitive detection of dopamine in sweat. Mikrochim Acta 2024; 191:232. [PMID: 38565740 DOI: 10.1007/s00604-024-06313-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
A novel ternary heterojunction material In2O3/In2S3/ZnIn2S4 was synthesized, and a photoelectrochemical sensor was fabricated for the non-invasive test of dopamine (DA) in sweat. In2O3 multihollow microtubules were synthesized and then In2S3 was formed on their surface to construct a type-I heterojunction between In2S3 and In2O3. ZnIn2S4 was further introduced to form a Z-scheme heterojunction between In2S3/ZnIn2S4. Under photoexcitation, the photogenerated holes of In2O3 transferred to the valence band of In2S3, superimposed with the holes produced by In2S3, leads to a significantly higher photocatalytic oxidation capacity of In2O3/In2S3/ZnIn2S4 ternary composites than that of In2O3/In2S3. The Z-scheme heterojunction accelerates the transfer of photogenerated electrons accumulated on the type-I heterojunction. In the presence of DA, it is rapidly oxidized into polydopamine (PDA) by In2O3/In2S3, and the benzoquinone groups of PDA compete for the photogenerated electrons to reduce the current in the external circuit, whereby DA determination is achieved. Owing to the combination of type-I and Z-scheme heterojunction, the sensor showed extremely high sensitivity, with a detection limit of 3.94 × 10-12 mol/L. It is one of the most sensitive methods for DA detection reported and has been applied to the determination of DA in human sweat.
Collapse
Affiliation(s)
- Yu Zhou
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, Guangxi, China
| | - Wei Xiao
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, Guangxi, China
| | - Gang Tian
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, Guangxi, China
| | - Suni Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, Guangxi, China
| | - Xiaoping Wei
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, Guangxi, China.
| | - Jianping Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, Guangxi, China.
| |
Collapse
|
3
|
Wang H, Chen Y, Mo M, Dorsel PKP, Wu C. Visualized adsorption and enhanced photocatalytic removal of Cr 6+ by carbon dots-incorporated fluorescent nanocellulose aerogels. Int J Biol Macromol 2023; 253:127206. [PMID: 37793519 DOI: 10.1016/j.ijbiomac.2023.127206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/13/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
In this study, carbon dots (CDs) and titanate nanofibers (TNs) were mixed with TEMPO-oxidized nanocellulose (TOCNC) to prepare fluorescent nanocellulose aerogels (FNAs) by a Schiff base reaction. The resulting FNA can detect the adsorption of Cr6+ through the fluorescence quenching in CDs and promote the removal of Cr6+ through the synergistic effect of CDs in photocatalysis. The optimized FNA has a maximum adsorption capacity of 543.38 mg/g, higher than most reported Cr6+ adsorbents. This excellent performance is due to the porous structure of the aerogel, which gives it a high specific surface area of 20.53 m2/g and provides abundant adsorption sites. Simultaneously, CDs can enhance the amino-induced Cr6+ adsorption, improve the photocatalytic performance of TNs, and expose more adsorption sites through electrostatic adsorption of amino-induced reduction products (Cr3+). This study explores the preparation of visualized nanosorbents with enhanced photocatalytic removal of Cr6+ and provides a new direction for nanoscale photocatalysts.
Collapse
Affiliation(s)
- Hanyu Wang
- State Key Laboratory of Biobased Material and Green Papermaking,Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China
| | - Yehong Chen
- State Key Laboratory of Biobased Material and Green Papermaking,Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China.
| | - Meiqing Mo
- State Key Laboratory of Biobased Material and Green Papermaking,Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China
| | - Padonou-Kengue Patrick Dorsel
- State Key Laboratory of Biobased Material and Green Papermaking,Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China
| | - Chaojun Wu
- State Key Laboratory of Biobased Material and Green Papermaking,Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China.
| |
Collapse
|
4
|
Qi X, Peng J, Zhang X, Cai H, Huang Y, Qiao J, Guo Y, Guo X, Wu Y. Computer chip-inspired design of nanocellulose/carbon dots hydrogel as superior intensifier of nano-sized photocatalyst for effective Cr(VI) removal. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130689. [PMID: 36586334 DOI: 10.1016/j.jhazmat.2022.130689] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Hydrogel, a common carrier of photocatalyst that suffers from compromised catalytic efficiency, is still far from practical application. Herein, based on "computer chip-inspired design", a novel nanocellulose/carbon dots hydrogel (NCH) was fabricated as superior intensifier instead of common carrier of sodium titanate nanofibre (STN), where carbon dots (CDs) enhanced amino group-induced adsorption for Cr(VI), promoted photocatalytic properties of STN via transferring the photogenerated electron-hole pairs and improved amino group-induced desorption for reduced product (Cr(III)) via electrostatic repulsion, showing an efficiency of 1 + 1 > 2. Adsorption and photocatalysis experiments demonstrated superior removal performance of the NCH incorporating STN, as shown by theoretical maximum adsorption capacity of 425.74 mg/g and kinetic constant of 0.0374 min-1 in the photocatalytic process, which was nearly 6.6 and 7.3 times of STN. A series of experiments was conducted to confirm the novel mechanism of CDs-enhanced adsorption-photocatalysis-desorption synergy. This work not only provides new insights into the fabrication of a superior intensifier for nanosized photocatalyst, but also proposes one new mechanism of CDs-enhanced adsorption-photocatalysis-desorption synergy, which is helpful for designing and optimizing nanosized photocatalyst.
Collapse
Affiliation(s)
- Xinmiao Qi
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Junwen Peng
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xuefeng Zhang
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Haoxuan Cai
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yong Huang
- Joint International Research Laboratory of Biomass Energy and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianzheng Qiao
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yucong Guo
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xin Guo
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Yiqiang Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
5
|
Hasheena M, Ratnamala A, Noorjahan M, Deepthi Reddy G, Chandra Babu Naidu K. Electrochemical sensor for detection of dopamine and tyrosine using CdS–C quantum dots modified electrode. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01794-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Yang C, Wang Y, Wu Z, Zhang Z, Hu N, Peng C. Three-Dimensional MoS2/Reduced Graphene Oxide Nanosheets/Graphene Quantum Dots Hybrids for High-Performance Room-Temperature NO2 Gas Sensors. NANOMATERIALS 2022; 12:nano12060901. [PMID: 35335714 PMCID: PMC8954772 DOI: 10.3390/nano12060901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 02/01/2023]
Abstract
This study presents three-dimensional (3D) MoS2/reduced graphene oxide (rGO)/graphene quantum dots (GQDs) hybrids with improved gas sensing performance for NO2 sensors. GQDs were introduced to prevent the agglomeration of nanosheets during mixing of rGO and MoS2. The resultant MoS2/rGO/GQDs hybrids exhibit a well-defined 3D nanostructure, with a firm connection among components. The prepared MoS2/rGO/GQDs-based sensor exhibits a response of 23.2% toward 50 ppm NO2 at room temperature. Furthermore, when exposed to NO2 gas with a concentration as low as 5 ppm, the prepared sensor retains a response of 15.2%. Compared with the MoS2/rGO nanocomposites, the addition of GQDs improves the sensitivity to 21.1% and 23.2% when the sensor is exposed to 30 and 50 ppm NO2 gas, respectively. Additionally, the MoS2/rGO/GQDs-based sensor exhibits outstanding repeatability and gas selectivity. When exposed to certain typical interference gases, the MoS2/rGO/GQDs-based sensor has over 10 times higher sensitivity toward NO2 than the other gases. This study indicates that MoS2/rGO/GQDs hybrids are potential candidates for the development of NO2 sensors with excellent gas sensitivity.
Collapse
Affiliation(s)
- Cheng Yang
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China; (C.Y.); (Z.W.); (Z.Z.); (C.P.)
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Yanyan Wang
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China; (C.Y.); (Z.W.); (Z.Z.); (C.P.)
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
- Correspondence: (Y.W.); (N.H.)
| | - Zhekun Wu
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China; (C.Y.); (Z.W.); (Z.Z.); (C.P.)
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Zhanbo Zhang
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China; (C.Y.); (Z.W.); (Z.Z.); (C.P.)
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Nantao Hu
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: (Y.W.); (N.H.)
| | - Changsi Peng
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China; (C.Y.); (Z.W.); (Z.Z.); (C.P.)
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| |
Collapse
|
7
|
Zhang Y, Liu D, Zhang Y, Qian Y, Li C, Qu Z, Xu R, Wei Q. Highly sensitive photoelectrochemical neuron specific enolase analysis based on cerium and silver Co-Doped Sb 2WO 6. Biosens Bioelectron 2022; 203:114047. [PMID: 35123314 DOI: 10.1016/j.bios.2022.114047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/10/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022]
Abstract
A signal-enhanced photoelectrochemical immunoassay technique for detecting neuron specific enolase (NSE) was proposed. As a photoactive matrix, (Ce,Ag):Sb2WO6 was firstly investigated via doping Ce and Ag into Sb2WO6. It could be found that the presence of Ce and Ag not only had enormous variation on the morphology of Sb2WO6, but also showed excellent PEC behavior. In order to further improve the visible light utilization rate of (Ce,Ag):Sb2WO6, In2S3 was modified onto the surface of (Ce,Ag):Sb2WO6 to enhance visible light absorption. In addition, the CdS/PDA was served as a secondary antibody marker to further amplify signal. Especially, PDA as an electron donor could effectively remove photogenerated holes. Meanwhile, the good matching cascade band-edge levels between CdS and Sb2WO6 could promote photoelectron migration, improve the PEC response, and achieve sensitive detection of NSE. Under the selected excellent conditions, the photocurrent can linearly increase with the increase of NSE concentration in the operating range from 0.1 pg/mL to 50 ng/mL, and the limit of detection is 1.57 fg/mL. The constructed immunosensor also exhibits satisfactory stability, selectivity, and reproducibility, and it creates conditions for the detection of other biomolecules.
Collapse
Affiliation(s)
- Yong Zhang
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, Yunnan Normal University, Kunming, 650500, China; Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan, 250022, China.
| | - Deling Liu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan, 250022, China
| | - Yingying Zhang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan, 250022, China
| | - Yanrong Qian
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan, 250022, China
| | - Chenchen Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan, 250022, China
| | - Zhengfang Qu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan, 250022, China
| | - Rui Xu
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, Yunnan Normal University, Kunming, 650500, China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan, 250022, China
| |
Collapse
|
8
|
Sohal N, Maity B, Basu S. Recent advances in heteroatom-doped graphene quantum dots for sensing applications. RSC Adv 2021; 11:25586-25615. [PMID: 35478909 PMCID: PMC9037181 DOI: 10.1039/d1ra04248c] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022] Open
Abstract
Graphene quantum dots (GQDs) are carbon-based fluorescent nanomaterials having various applications due to attractive properties. But the low photoluminescence (PL) yield and monochromatic PL behavior of GQDs put limitations on their real-time applications. Therefore, heteroatom doping of GQDs is recognized as the best approach to modify the optical as well as electronic properties of GQDs by modifying their chemical composition and electronic structure. In this review, the new strategies for preparing the heteroatom (N, B, S, P) doped GQDs by using different precursors and methods are discussed in detail. The particle size, emission wavelength, PL emissive color, and quantum yield of recently developed heteroatom doped GQDs are reported in this article. The investigation of structure, crystalline nature, and composition of heteroatom doped GQDs by various characterization techniques such as high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) are also described. The recent progress on the impact of mono or co-doping of heteroatoms on PL behavior, and optical, electrochemiluminescence (ECL), and electrochemical properties of GQDs is also surveyed. Further, heteroatom doped GQDs with attractive properties used in sensing of various metal ions, biomolecules, small organic molecules, etc. by using various techniques with different limits of detection are also summarized. This review provides progressive trends in the development of heteroatom doped GQDs and their various applications.
Collapse
Affiliation(s)
- Neeraj Sohal
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala 147004 India
| | - Banibrata Maity
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala 147004 India
| | - Soumen Basu
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala 147004 India
| |
Collapse
|
9
|
Liu X, Huang L, Qian K. Nanomaterial‐Based Electrochemical Sensors: Mechanism, Preparation, and Application in Biomedicine. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000104] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Xun Liu
- State Key Laboratory for Oncogenes and Related Genes Division of Cardiology Renji Hospital School of Medicine Shanghai Jiao Tong University 160 Pujian Road Shanghai 200127 P.R. China
- School of Biomedical Engineering Institute of Medical Robotics and Med-X Research Institute Shanghai Jiao Tong University Shanghai 200030 P.R. China
| | - Lin Huang
- Stem Cell Research Center Renji Hospital School of Medicine Shanghai Jiao Tong University 160 Pujian Road Shanghai 200127 P.R. China
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes Division of Cardiology Renji Hospital School of Medicine Shanghai Jiao Tong University 160 Pujian Road Shanghai 200127 P.R. China
- School of Biomedical Engineering Institute of Medical Robotics and Med-X Research Institute Shanghai Jiao Tong University Shanghai 200030 P.R. China
| |
Collapse
|
10
|
Maduraiveeran G, Chen A. Design of an enzyme-mimicking NiO@Au nanocomposite for the sensitive electrochemical detection of lactic acid in human serum and urine. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137612] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|