1
|
Kong Y, Jiang B, Tian Y, Liu R, Shaik F. Tailoring vinegar residue-derived all-carbon electrodes for efficient electrocatalytic carbon dioxide reduction to formate through heteroatom doping and defect enrichment. J Colloid Interface Sci 2024; 676:283-297. [PMID: 39029254 DOI: 10.1016/j.jcis.2024.07.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/28/2024] [Accepted: 07/10/2024] [Indexed: 07/21/2024]
Abstract
Electrocatalytic carbon dioxide reduction (ECO2R) to formate is the most technically and economically feasible approach to achieve electrochemical CO2 value addition. Here, a few-layer graphene is prepared from vinegar residue. Then a series of heteroatom-doped vertical graphene electrodes (X-rGO, X=P/S/N/B/, NS/NP/NB, NSP/NSB/NPB/NSPB) are prepared. The NS-rGO has improved ECO2R to formate selectivity (Faraday Efficiency (FEHCOO-) = 78.7 %) thanks to the synergistic effect between N and S. Carbon quantum dots (CQDs) are introduced into the electrode, the doped heteroatoms are further removed by high-temperature to form the defects-rich electrode (NS-CQDs-rGO-1100), which has better catalytic performance (FEHCOO-=90 %, stability over 10 h) with electrochemical double layer capacitance of 12.5 mF cm-2. The intrinsic effect of heteroatom doping and defects on the ECO2R activity of the electrodes are explored by density functional theory calculation. This work broadens the field of preparation of graphene and opens the door to the development of cost-effective electrocatalysts for efficient ECO2R.
Collapse
Affiliation(s)
- Yun Kong
- Shaanxi Provincial Key Laboratory of Earth Surface System and Environmental Carrying Capacity, and College of Urban and Environmental Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Bin Jiang
- Shaanxi Provincial Key Laboratory of Earth Surface System and Environmental Carrying Capacity, and College of Urban and Environmental Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China; Shaanxi Provincial Key Laboratory of Carbon Neutrality Technology, Carbon Neutrality College (YULIN), Northwest University, Xi'an, Shaanxi 710127, People's Republic of China.
| | - Yuchen Tian
- Shaanxi Provincial Key Laboratory of Earth Surface System and Environmental Carrying Capacity, and College of Urban and Environmental Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Rong Liu
- Shaanxi Provincial Key Laboratory of Earth Surface System and Environmental Carrying Capacity, and College of Urban and Environmental Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Firdoz Shaik
- Department of Biotechnology, Vignan's Foundation for Science, Technology, and Research, Vadlamudi, Guntur 522213, India
| |
Collapse
|
2
|
Fioravanti F, Martínez S, Delgado S, García G, Rodriguez JL, Tejera EP, Lacconi GI. Effect of MoS2 in doped-reduced graphene oxide composites. Enhanced electrocatalysis for HER. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
3
|
Liaquat H, Imran M, Latif S, Iqbal S, Hussain N, Bilal M. Citric acid-capped NiWO 4/Bi 2S 3 and rGO-doped NiWO 4/Bi 2S 3 nanoarchitectures for photocatalytic decontamination of emerging pollutants from the aqueous environment. ENVIRONMENTAL RESEARCH 2022; 212:113276. [PMID: 35461846 DOI: 10.1016/j.envres.2022.113276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Herein, we describe the successful synthesis of NiWO4/Bi2S3 and reduced graphene oxide (rGO-NiWO4/Bi2S3) nanocomposites through a simple green sol-gel approach. The fabricated composites were subsequently characterized by Fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy Dispersive X-Ray Analysis (EDX) and ultraviolet-visible spectroscopy (UV-VIS) spectroscopic analyses. Dielectric properties were done by a precision impedance analyzer. Tanδ and dielectric constant for NiWO4/Bi2S3 and rGO-NiWO4/Bi2S3 were 1.811, 292818, and 0.2970, 344574, respectively, at 20 Hz. The photocatalytic performance of NiWO4/Bi2S3 and rGO-NiWO4/Bi2S3 was investigated against methylene blue and methyl orange dyes in an aqueous medium. NiWO4-Bi2S3 showed degradation of methylene blue 15.52% after 20 min, 21.8% after 30 min and 46.8% after 40 min. Similarly, for methyl orange dye it was 18.1% after 20 min, 54% after 30 min and 59.36% after 40 min. Compared to NiWO4/Bi2S3, rGO-NiWO4/Bi2S3 exhibited superior degradation efficiency of 7.5% (20 min), 25.24% (30 min) and 57.71% (40 min) for methylene blue, and 35.7% (20 min), 56.98% (30 min) and 72.42% (40 min) for methyl orange under sunlight. This enhancement in photocatalytic and dielectric properties might be attributed to the presence of graphene in rGO-NiWO4/Bi2S3 nanococomposite. Different factors such as effect of time, pH, dose of catalyst, concentration of dye were optimized and the reusability of superior catalyst rGO-NiWO4/Bi2S3 was also checked for four cycles. In conclusion, promising photocatalytic and dielectric properties of rGO-NiWO4/Bi2S3 suggest its potential applications in the photocatalytic degradation of organic pollutants and energy storage materials. This study provides a well-developed route to exploit metal sulphide/oxide nanocomposites in environmental remediation and energy storage devices.
Collapse
Affiliation(s)
- Hina Liaquat
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Shoomaila Latif
- School of Physical Sciences, University of the Punjab, Lahore, 54000, Pakistan.
| | - Sajid Iqbal
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, 54000, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
4
|
Niu Y, Shang D, Li Z. Micro/Nano Energy Storage Devices Based on Composite Electrode Materials. NANOMATERIALS 2022; 12:nano12132202. [PMID: 35808038 PMCID: PMC9268354 DOI: 10.3390/nano12132202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022]
Abstract
It is vital to improve the electrochemical performance of negative materials for energy storage devices. The synergistic effect between the composites can improve the total performance. In this work, we prepare α-Fe2O3@MnO2 on carbon cloth through hydrothermal strategies and subsequent electrochemical deposition. The α-Fe2O3@MnO2 hybrid structure benefits electron transfer efficiency and avoids the rapid decay of capacitance caused by volume expansion. The specific capacitance of the as-obtained product is 615 mF cm−2 at 2 mA cm−2. Moreover, a flexible supercapacitor presents an energy density of 0.102 mWh cm−3 at 4.2 W cm−2. Bending tests of the device at different angles show excellent mechanical flexibility.
Collapse
Affiliation(s)
- Yanqi Niu
- School of Mechanical, Electronic & Information Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; (D.S.); (Z.L.)
- Institute of Intelligent Mining & Robotics, China University of Mining and Technology (Beijing), Beijing 100083, China
- Key Laboratory of Intelligent Mining and Robotics, Ministry of Emergency Management, Beijing 100083, China
- Correspondence:
| | - Deyong Shang
- School of Mechanical, Electronic & Information Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; (D.S.); (Z.L.)
- Institute of Intelligent Mining & Robotics, China University of Mining and Technology (Beijing), Beijing 100083, China
- Key Laboratory of Intelligent Mining and Robotics, Ministry of Emergency Management, Beijing 100083, China
| | - Zhanping Li
- School of Mechanical, Electronic & Information Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; (D.S.); (Z.L.)
- Institute of Intelligent Mining & Robotics, China University of Mining and Technology (Beijing), Beijing 100083, China
- Key Laboratory of Intelligent Mining and Robotics, Ministry of Emergency Management, Beijing 100083, China
| |
Collapse
|
5
|
Ternary Co-Ni sulfides deposited on Co(OH)2 nanoflakes decorated carbon cloth as electrode for supercapacitor. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Zhuang J, Li G, Wang M, Li G, Li Y, Jia L. Biomass‐derived carbon quantum dots induced self‐assembly of 3D networks of nickel–cobalt double hydroxide nanorods as high‐performance electrode materials for supercapacitor. ChemElectroChem 2022. [DOI: 10.1002/celc.202200296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jiayuan Zhuang
- Xiamen University Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering CHINA
| | - Gang Li
- Xiamen University Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering CHINA
| | - Minghe Wang
- Xiamen University Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering CHINA
| | - Guifang Li
- Xiamen University Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering CHINA
| | - Yawen Li
- Xiamen University Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering CHINA
| | - Lishan Jia
- Xiamen University Department of Chemical Engineering and Biochemical Engineering Daxue road 361005 Xiamen CHINA
| |
Collapse
|
7
|
Zhu S, Li T, Bandari VK, Schmidt OG, Gruschwitz M, Tegenkamp C, Sommer M, Choudhury S. High Mass Loading Asymmetric Micro-supercapacitors with Ultrahigh Areal Energy and Power Density. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58486-58497. [PMID: 34866388 DOI: 10.1021/acsami.1c16248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High mass loading asymmetric micro-supercapacitors (MSCs) are key components for the development of high-performance energy and power supply systems. Here, a concept for achieving high mass loading electrodes is presented and applied to high mass loading micro-supercapacitors with ultrahigh areal energy and power density. The positive electrode is made from porous carbon with birnessite coverage and multiwalled carbon nanotubes (CNTs) as conducting additives (PIC-CNTs-MnO2). The negative electrode is prepared from hierarchically porous active carbon mixed with CNTs (PICK-CNTs). Both positive and negative electrode materials are tailored to ensure a high content of macro- and mesopores. MSCs with an optimized mass loading of 13.9 mg·cm-2 (maximum: 23.6 mg·cm-2) provide an ultrahigh areal capacitance of 1.13 F·cm-2 (volumetric capacitance: 22.6 F·cm-3), an outstanding energy of 627.8 μWh·cm-2, and a maximum power density of 64 mW·cm-2. About 85% of the initial capacitance remained after 5000 cycles. Moreover, shunt and tandem device testing confirmed a high uniformity of these MSCs, meeting the requirements of adjustable output currents and voltages in microchips.
Collapse
Affiliation(s)
- Shijin Zhu
- Polymer Chemistry, Chemnitz University of Technology, Chemnitz 09107, Germany
- Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
| | - Tianming Li
- Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, Chemnitz 09107, Germany
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden 01069, Germany
| | - Vineeth K Bandari
- Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, Chemnitz 09107, Germany
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden 01069, Germany
| | - Oliver G Schmidt
- Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, Chemnitz 09107, Germany
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden 01069, Germany
| | - Markus Gruschwitz
- Institute of Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Christoph Tegenkamp
- Institute of Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Michael Sommer
- Polymer Chemistry, Chemnitz University of Technology, Chemnitz 09107, Germany
- Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
| | - Soumyadip Choudhury
- Polymer Chemistry, Chemnitz University of Technology, Chemnitz 09107, Germany
- Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
8
|
Xia T, Zhao D, Xia Q, Umar A, Wu X. Realizing high performance flexible supercapacitors by electrode modification. RSC Adv 2021; 11:39045-39050. [PMID: 35492450 PMCID: PMC9044427 DOI: 10.1039/d1ra07880a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/02/2021] [Indexed: 11/28/2022] Open
Abstract
It is well known that the structure of an electrode material seriously affects its electrochemical performance. In this study, we prepare hybrid structured NiCo2S4@PPy nanoarchitectures by a hydrothermal method and subsequent electrodeposition process. The specific capacitance of the obtained sample is 1733.23 C g−1 at 1 A g−1. The assembled asymmetric device presents an energy density of 59.59 W h kg−1 at 1404.04 W kg−1. The excellent electrochemical performance can be attributed to the synergistic effect between the high theoretical specific capacitance of the NiCo2S4 sheets and the superior cycling stability of the PPy film. The device also shows an outstanding mechanical flexibility at different bending angles. We prepare hybrid structured NiCo2S4@PPy nanoarchitectures by a hydrothermal method and subsequent electrodeposition process. The assembled asymmetric device presents an energy density of 59.59 W h kg−1 at 1404.04 W kg−1.![]()
Collapse
Affiliation(s)
- Tong Xia
- School of Materials Science and Engineering, Shenyang University of Technology Shenyang 110870 P. R. China
| | - Depeng Zhao
- School of Materials Science and Engineering, Shenyang University of Technology Shenyang 110870 P. R. China
| | - Qing Xia
- School of Materials Science and Engineering, Shenyang University of Technology Shenyang 110870 P. R. China
| | - Ahmad Umar
- Department of Chemistry, College of Science and Arts, Promising Centre for Sensors and Electronic Devices (PCSED), Najran University Najran 11001 Saudi Arabia
| | - Xiang Wu
- School of Materials Science and Engineering, Shenyang University of Technology Shenyang 110870 P. R. China .,Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
9
|
Boosted electrochemical performance of CuS anchored on carbon cloth as an integrated electrode for quasi-solid-state flexible supercapacitor. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
Ansarinejad H, Shabani-Nooshabadi M, Ghoreishi SM. Enhanced Supercapacitor Performance Using a Co 3 O 4 @Co 3 S 4 Nanocomposite on Reduced Graphene Oxide/Ni Foam Electrodes. Chem Asian J 2021; 16:1258-1270. [PMID: 33783970 DOI: 10.1002/asia.202100124] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/28/2021] [Indexed: 02/05/2023]
Abstract
To avoid an enormous energy crisis in the not-too-distant future, it be emergent to establish high-performance energy storage devices such as supercapacitors. For this purpose, a three-dimensional (3D) heterostructure of Co3 O4 and Co3 S4 on nickel foam (NF) that is covered by reduced graphene oxide (rGO) has been prepared by following a facile multistep method. At first, rGO nanosheets are deposited on NF under mild hydrothermal conditions to increase the surface area. Subsequently, nanowalls of cobalt oxide are electro-deposited on rGO/Ni foam by applying cyclic-voltammetry (CV) under optimized conditions. Finally, for the synthesis of Co3 O4 @Co3 S4 nanocomposite, the nanostructure of Co3 S4 was fabricated from Co3 O4 nanowalls on rGO/NF by following an ordinary hydrothermal process through the sulfurization for the electrochemical application. The samples are characterized by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The obtained sample delivers a high capacitance of 13.34 F cm-2 (5651.24 F g-1 ) at a current density of 6 mA cm-2 compared to the Co3 O4 /rGO/NF electrode with a capacitance of 3.06 F cm-2 (1230.77 F g-1 ) at the same current density. The proposed electrode illustrates the superior electrochemical performance such as excellent specific energy density of 85.68 W h Kg-1 , specific power density of 6048.03 W kg-1 and a superior cycling performance (86% after 1000 charge/discharge cycles at a scan rate of 5 mV s-1 ). Finally, by using Co3 O4 @Co3 S4 /rGO/NF and the activated carbon-based electrode as positive and negative electrodes, respectively, an asymmetric supercapacitor (ASC) device was assembled. The fabricated ASC provides an appropriate specific capacitance of 79.15 mF cm-2 at the applied current density of 1 mA cm-2 , and delivered an energy density of 0.143 Wh kg-1 at the power density of 5.42 W kg-1 .
Collapse
Affiliation(s)
- Hanieh Ansarinejad
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Mehdi Shabani-Nooshabadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran.,Institute of Nano Science and Nano Technology, University of Kashan, Kashan, Iran
| | - Sayed Mehdi Ghoreishi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| |
Collapse
|
11
|
Amorphous phase induced high phosphorous-doping in dandelion-like cobalt sulfides for enhanced battery-supercapacitor hybrid device. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|