1
|
Ramulu B, Arbaz SJ, Nagaraju M, Yu JS. Multifunctional metal selenide-based materials synthesized via a one-pot solvothermal approach for electrochemical energy storage and conversion applications. NANOSCALE 2023; 15:13049-13061. [PMID: 37493392 DOI: 10.1039/d3nr02103c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Highly-efficient electroactive materials with distinctive electrochemical features, along with suitable strategies to prepare hetero-nanoarchitectures incorporating two or more transition metal selenides, are currently required to increase charge storage ability. Herein, a one-pot solvothermal approach is used to develop iron-nickel selenide spring-lawn-like architectures (FeNiSe SLAs) on nickel (Ni) foam. The porous Ni foam scaffold not only enables the uniform growth of FeNiSe SLAs but also serves as an Ni source. The effect of reaction time on their morphological and electrochemical properties is investigated. The FeNiSe-15 h electrode shows high areal capacity (493.2 μA h cm-2) and superior cycling constancy. The as-assembled aqueous hybrid cell (AHC) demonstrates high areal capacity and a decent rate capability of 59.4% (50 mA cm-2). The AHC exhibits good energy and power densities, along with excellent cycling stability. Furthermore, to confirm its practicability, the AHC is employed to drive portable electronic appliances by charging it with wind energy. The electrocatalytic activity of FeNiSe-based materials to complete the oxygen evolution reaction (OER) is explored. Among them, the FeNiSe-15 h catalyst shows good OER performance at a current density of 50 mA cm-2. This general synthesis approach may initiate a strategy of advanced metal selenide-based materials for multifunctional applications.
Collapse
Affiliation(s)
- Bhimanaboina Ramulu
- Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| | - Shaik Junied Arbaz
- Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| | - Manchi Nagaraju
- Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| | - Jae Su Yu
- Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
2
|
Keshk AA, Elsayed NH, Zareh MM, Alenazi DAK, Said S, Alatawi AO, Albalawi RK, Maher M, Algabry SM, Shoueir K. Kappa-carrageenan for benign preparation of CdSeNPs enhancing the electrochemical measurement of AC symmetric supercapacitor device based on neutral aqueous electrolyte. Int J Biol Macromol 2023; 234:123620. [PMID: 36773863 DOI: 10.1016/j.ijbiomac.2023.123620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
This study presents the development of an electrochemical supercapacitor with a cadmium selenide nanoparticles (CdSeNPs) electrode utilizing a straightforward and economical method based on kappa-carrageenan (κ-CGN). The structural, morphological, and optical characteristics of CdSeNPs were assessed. Activated carbon (AC) and green-prepared CdSeNPs were easily mixed to achieve excellent electrochemical properties. The nanoelectrode (AC@CdSe) was tested in an aqueous electrolyte of sodium sulfate (Na2SO4) with a concentration of 1 Molar. Specific capacitance (Csp) for the AC electrode and the AC@CdSe electrode at 1 A g-1 was calculated to be 103 and 480 F g-1, respectively. Besides, the symmetric supercapacitor AC@CdSe/AC@CdSe device has a high specific energy of 52 Wh kg-1 and a maximum specific power of 2880 W kg-1, with a specific capacitance of 115.5 F g-1. With a coulombic efficiency of between 82 % and 100 %, the device continues to maintain excellent capacitance after 10.000 cycles.
Collapse
Affiliation(s)
- Ali A Keshk
- Department of Chemistry, Faculty of Science, University of Tabuk, 71474 Tabuk, Saudi Arabia.
| | - Nadia H Elsayed
- Department of Chemistry, Faculty of Science, University of Tabuk, 71474 Tabuk, Saudi Arabia; Department of Polymers and Pigments, National Research Centre, Dokki, Cairo 12311, Egypt
| | - Mohsen M Zareh
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Duna A K Alenazi
- Department of Chemistry, Faculty of Science, University of Tabuk, 71474 Tabuk, Saudi Arabia
| | - S Said
- Physics Department, Faculty of Science, University of Tabuk, 71421, Saudi Arabia; Physics Department, Faculty of Science, Benha University, Benha, Egypt
| | | | - Raghad K Albalawi
- Department of Chemistry, University College Alwajh, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Mahmoud Maher
- Mechatronics Department, Institute of Engineering and Technology, Al-Mahalla-El-Kobra, Egypt
| | - Samar M Algabry
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Kamel Shoueir
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt; Institut de Chimie et Procédés pour l'Énergie, l'Environnement et la Santé (ICPEES), CNRS UMR 7515-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France.
| |
Collapse
|
3
|
Self-supported electrode constructed by hierarchical nickel-cobalt selenide nanosheet arrays for high-performance flexible supercapacitors. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
4
|
Carbon-Encased Mixed-Metal Selenide Rooted with Carbon Nanotubes for High-Performance Hybrid Supercapacitors. Molecules 2022; 27:molecules27217507. [DOI: 10.3390/molecules27217507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Transition metal-based compounds with high theoretical capacitance and low cost represent one class of promising electrode materials for high-performance supercapacitors. However, their low intrinsic electrical conductivity impedes their capacitive effect and further limits their practical application. Rational regulation of their composition and structure is, therefore, necessary to achieve a high electrode performance. Herein, a well-designed carbon-encased mixed-metal selenide rooted with carbon nanotubes (Ni-Co-Se@C-CNT) was derived from nickel–cobalt bimetallic organic frameworks. Due to the unique porous structure, the synergistic effect of bimetal selenides and the in situ growth of carbon nanotubes, the composite exhibits good electrical conductivity, high structural stability and abundant redox active sites. Benefitting from these merits, the Ni-Co-Se@C-CNT exhibited a high specific capacity of 554.1 C g−1 (1108.2 F g−1) at 1 A g−1 and a superior cycling performance, i.e., 96.4% of the initial capacity was retained after 5000 cycles at 10 A g−1. Furthermore, a hybrid supercapacitor assembled with Ni-Co-Se@C-CNT cathode and activated carbon (AC) anode shows a superior energy density of 38.2 Wh kg−1 at 1602.1 W kg−1.
Collapse
|
5
|
Hamouda HA, Abdu HI, Hu Q, Abubaker MA, Lei H, Cui S, Alduma AI, Peng H, Ma G, Lei Z. Three‐dimensional nanoporous activated carbon electrode derived from acacia wood for high‐performance supercapacitor. Front Chem 2022; 10:1024047. [PMID: 36311421 PMCID: PMC9597690 DOI: 10.3389/fchem.2022.1024047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Herein, the novel acacia wood based hierarchical porous activated carbons (AWCs) are easily prepared, low cost and have excellent characterization, such as special biomass nanopores via structural stability and large specific surface areas. Activating agents such as KOH, ZnCl2, and H3PO4 have been used to convert acacia wood carbon into active carbons such as AWC-K, AWC-Z, and AWC-P, respectively, which are named after the activating agent. As a supercapacitor electrode, the AWC-K sample has a high yield was 69.8%, significant specific surface area of 1563.43 m2g−1 and layer thickness of 4.6 mm. Besides that, it showed specific capacitance of 224.92 F g−1 at 0.5 A g−1 in 2 M KOH as electrolyte. In addition, the AWC-K//AWC-K symmetrical supercapacitor device displays high energy density of 23.98 Wh kg−1 at 450 W kg−1 power density with excellent cycling number stability was 93.2% long lifetime of 10,000 cycles using 0.5 M Na2SO4 as electrolyte. The high electrochemistry performance mainly contributed the special biomass pores structure. Therefore, the presented approach opens new avenues in supercapacitor applications to meet energy storage.
Collapse
Affiliation(s)
- Hamouda Adam Hamouda
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
- Department of Chemistry, Faculty of Science, University of Kordofan, El Obeid, Al-Ubayyid, Sudan
| | - Hassan Idris Abdu
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi Province Key Laboratory of Bio-resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Qinzheng Hu
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Mohamed Aamer Abubaker
- College of Life Science, Northwest Normal University, Lanzhou, China
- Department of Biology, Faculty of Education, University of Khartoum, Khartoum, Sudan
| | - Haikuo Lei
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Shuzhen Cui
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Anwar I. Alduma
- Department of Chemistry, Faculty of Science, University of Kordofan, El Obeid, Al-Ubayyid, Sudan
| | - Hui Peng
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Guofu Ma
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
- *Correspondence: Guofu Ma,
| | - Ziqiang Lei
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| |
Collapse
|
6
|
Recent Advancements in Chalcogenides for Electrochemical Energy Storage Applications. ENERGIES 2022. [DOI: 10.3390/en15114052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Energy storage has become increasingly important as a study area in recent decades. A growing number of academics are focusing their attention on developing and researching innovative materials for use in energy storage systems to promote sustainable development goals. This is due to the finite supply of traditional energy sources, such as oil, coal, and natural gas, and escalating regional tensions. Because of these issues, sustainable renewable energy sources have been touted as an alternative to nonrenewable fuels. Deployment of renewable energy sources requires efficient and reliable energy storage devices due to their intermittent nature. High-performance electrochemical energy storage technologies with high power and energy densities are heralded to be the next-generation storage devices. Transition metal chalcogenides (TMCs) have sparked interest among electrode materials because of their intriguing electrochemical properties. Researchers have revealed a variety of modifications to improve their electrochemical performance in energy storage. However, a stronger link between the type of change and the resulting electrochemical performance is still desired. This review examines the synthesis of chalcogenides for electrochemical energy storage devices, their limitations, and the importance of the modification method, followed by a detailed discussion of several modification procedures and how they have helped to improve their electrochemical performance. We also discussed chalcogenides and their composites in batteries and supercapacitors applications. Furthermore, this review discusses the subject’s current challenges as well as potential future opportunities.
Collapse
|
7
|
Hollow NiCoSe2/C prepared through a step-by-step derivatization method for high performance supercapacitors. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Xia J, Zhang L, Xuan S, Ni Y, Zhang L. Self-templating Scheme for the Synthesis of NiCo2Se4 and BiSe Hollow Microspheres for High-energy Density Asymmetric Supercapacitors. CrystEngComm 2022. [DOI: 10.1039/d1ce01627j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porous hollow structure of the electrode materials can enlarge the surface area in contact with the electrolyte, accelerating the transport of ions and electrons during redox reaction to enhance electrochemical...
Collapse
|
9
|
Zhou T, Tang S, Yu H, Shen L, Huang Q, Yang S, Yu L, Zhang L. Microwave heating followed by a solvothermal method to synthesize nickel–cobalt selenide/rGO for high-performance supercapacitors. NEW J CHEM 2022. [DOI: 10.1039/d2nj00488g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient microwave heating followed by a solvothermal method is used to synthesize (Ni0.85Se)3(Co0.85Se)/rGO nanorods with an ultrahigh specific capacitance of 2009 F g−1 at a current density of 2 A g−1.
Collapse
Affiliation(s)
- Tianli Zhou
- State Key Lab of Oil and Gas Reservoir Geology & Exploitation, Southwest Petroleum University, Chengdu 610500, P. R. China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Shuihua Tang
- State Key Lab of Oil and Gas Reservoir Geology & Exploitation, Southwest Petroleum University, Chengdu 610500, P. R. China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Honglin Yu
- State Key Lab of Oil and Gas Reservoir Geology & Exploitation, Southwest Petroleum University, Chengdu 610500, P. R. China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Lieha Shen
- State Key Lab of Oil and Gas Reservoir Geology & Exploitation, Southwest Petroleum University, Chengdu 610500, P. R. China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Qiankuan Huang
- State Key Lab of Oil and Gas Reservoir Geology & Exploitation, Southwest Petroleum University, Chengdu 610500, P. R. China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Shuang Yang
- State Key Lab of Oil and Gas Reservoir Geology & Exploitation, Southwest Petroleum University, Chengdu 610500, P. R. China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Limei Yu
- State Key Lab of Oil and Gas Reservoir Geology & Exploitation, Southwest Petroleum University, Chengdu 610500, P. R. China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Lei Zhang
- State Key Lab of Oil and Gas Reservoir Geology & Exploitation, Southwest Petroleum University, Chengdu 610500, P. R. China
- School of Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| |
Collapse
|
10
|
Qu Z, Li J, Guo M, Zhao L, Duan L, Ding S. Design tremella-like Ni-Co selenide with wonderful electrochemical performances as supercapacitor cathode material. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Qin H, Lv Y, Li P, Xiao M, Song H, Zhang Q, Yang J. Bismuth metal organic framework-derived Bi 2Se 3@C for high performance supercapacitors. NEW J CHEM 2021. [DOI: 10.1039/d1nj03904k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The synthesis of Bi2Se3@C materials for high performance supercapacitors through a bismuth metal organic framework (CAU-17) assisted hydrothermal selenization method followed by carbonized annealing.
Collapse
Affiliation(s)
- Hengjie Qin
- College of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Ying Lv
- College of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Ping Li
- College of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Meixia Xiao
- College of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Haiyang Song
- College of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Qian Zhang
- School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Jialun Yang
- School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|