1
|
Islam F, Ahsan M, Islam N, Hossain MI, Bahadur NM, Aziz A, Al-Humaidi JY, Rahman MM, Maiyalagan T, Hasnat MA. Recent Advancements in Ascribing Several Platinum Free Electrocatalysts Pertinent to Hydrogen Evolution from Water Reduction. Chem Asian J 2024; 19:e202400220. [PMID: 38654594 DOI: 10.1002/asia.202400220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
The advancement of a sustainable and scalable catalyst for hydrogen production is crucial for the future of the hydrogen economy. Electrochemical water splitting stands out as a promising pathway for sustainable hydrogen production. However, the development of Pt-free electrocatalysts that match the energy efficiency of Pt while remaining economical poses a significant challenge. This review addresses this challenge by highlighting latest breakthroughs in Pt-free catalysts for the hydrogen evolution reaction (HER). Specifically, we delve into the catalytic performance of various transition metal phosphides, metal carbides, metal sulphides, and metal nitrides toward HER. Our discussion emphasizes strategies for enhancing catalytic performance and explores the relationship between structural composition and the performance of different electrocatalysts. Through this comprehensive review, we aim to provide insights into the ongoing efforts to overcome barriers to scalable hydrogen production and pave the way for a sustainable hydrogen economy.
Collapse
Affiliation(s)
- Fahamidul Islam
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
- Department of Chemistry, Faculty of Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Mohebul Ahsan
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
- Division of Chemistry, Department of Science and Humanities, Military Institute of Science and Technology, Mirpur Cantonment-, 1216, Dhaka, Bangladesh
| | - Nurnobi Islam
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Mohammad Imran Hossain
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Newaz Mohammed Bahadur
- Department of Chemistry, Faculty of Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Abdul Aziz
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Jehan Y Al-Humaidi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, Riyadh, 11671, Saudi Arabia
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Chemistry department, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - T Maiyalagan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamilnadu, India
| | - Mohammad A Hasnat
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
- International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| |
Collapse
|
2
|
Liu H, Zhou Q, Wang W, Fang F, Zhang J. Solid-State Nanopore Array: Manufacturing and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205680. [PMID: 36470663 DOI: 10.1002/smll.202205680] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Nanopore brings extraordinary properties for a variety of potential applications in various industrial sectors. Since manufacturing of solid-state nanopore is first reported in 2001, solid-state nanopore has become a hot topic in the recent years. An increasing number of manufacturing methods have been reported, with continuously decreased sizes from hundreds of nanometers at the beginning to ≈1 nm until recently. To enable more robust, sensitive, and reliable devices required by the industry, researchers have started to explore the possible methods to manufacture nanopore array which presents unprecedented challenges on the fabrication efficiency, accuracy and repeatability, applicable materials, and cost. As a result, the exploration of fabrication of nanopore array is still in the fledging period with various bottlenecks. In this article, a wide range of methods of manufacturing nanopores are summarized along with their achievable morphologies, sizes, inner structures for characterizing the main features, based on which the manufacturing of nanopore array is further addressed. To give a more specific idea on the potential applications of nanopore array, some representative practices are introduced such as DNA/RNA sequencing, energy conversion and storage, water desalination, nanosensors, nanoreactors, and dialysis.
Collapse
Affiliation(s)
- Hongshuai Liu
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical and Materials Engineering, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Qin Zhou
- College of Basic Medicine, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, Heilongjiang, 150081, China
| | - Wei Wang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, 2006 Xiyuan Ave, Chengdu, Sichuan, 611731, China
| | - Fengzhou Fang
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical and Materials Engineering, University College Dublin, Dublin, D04 V1W8, Ireland
- State Key Laboratory of Precision Measuring Technology and Instruments, Laboratory of Micro/Nano Manufacturing Technology (MNMT), Tianjin University, Tianjin, 300072, China
| | - Jufan Zhang
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical and Materials Engineering, University College Dublin, Dublin, D04 V1W8, Ireland
| |
Collapse
|
3
|
Chandrasekaran S, Sukanya R, Arumugam E, Chen SM, Vignesh S. Effective sonochemical synthesis of Titanium Nitride nanoflakes decorated Graphitic carbon nitride as an efficient bifunctional electrocatalyst for HER and OER performance. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
5
|
Chen X, Zhao X, Wang Y, Wang S, Shang Y, Xu J, Guo F, Zhang Y. Layered Ni−Co−P Electrode Synthesized by CV Electrodeposition for Hydrogen Evolution at Large Currents. ChemCatChem 2021. [DOI: 10.1002/cctc.202100707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xiaogang Chen
- Key Laboratory of Materials Physics (Ministry of Education), School of Physics and Microelectronics Zhengzhou University Zhengzhou 450052 P. R. China
| | - Xuan Zhao
- Key Laboratory of Materials Physics (Ministry of Education), School of Physics and Microelectronics Zhengzhou University Zhengzhou 450052 P. R. China
| | - Yuanyuan Wang
- Key Laboratory of Materials Physics (Ministry of Education), School of Physics and Microelectronics Zhengzhou University Zhengzhou 450052 P. R. China
| | - Shanshan Wang
- Key Laboratory of Materials Physics (Ministry of Education), School of Physics and Microelectronics Zhengzhou University Zhengzhou 450052 P. R. China
| | - Yuanyuan Shang
- Key Laboratory of Materials Physics (Ministry of Education), School of Physics and Microelectronics Zhengzhou University Zhengzhou 450052 P. R. China
| | - Jie Xu
- Key Laboratory of Materials Physics (Ministry of Education), School of Physics and Microelectronics Zhengzhou University Zhengzhou 450052 P. R. China
| | - Fengmei Guo
- Key Laboratory of Materials Physics (Ministry of Education), School of Physics and Microelectronics Zhengzhou University Zhengzhou 450052 P. R. China
| | - Yingjiu Zhang
- Key Laboratory of Materials Physics (Ministry of Education), School of Physics and Microelectronics Zhengzhou University Zhengzhou 450052 P. R. China
| |
Collapse
|