1
|
Anselmo S, Avola T, Kalouta K, Cataldo S, Sancataldo G, Muratore N, Foderà V, Vetri V, Pettignano A. Sustainable soy protein microsponges for efficient removal of lead (II) from aqueous environments. Int J Biol Macromol 2023; 239:124276. [PMID: 37011754 DOI: 10.1016/j.ijbiomac.2023.124276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Protein-based materials recently emerged as good candidates for water cleaning applications, due to the large availability of the constituent material, their biocompatibility and the ease of preparation. In this work, new adsorbent biomaterials were created from Soy Protein Isolate (SPI) in aqueous solution using a simple environmentally friendly procedure. Protein microsponge-like structures were produced and characterized by means of spectroscopy and fluorescence microscopy methods. The efficiency of these structures in removing lead (Pb2+) ions from aqueous solutions was evaluated by investigating the adsorption mechanisms. The molecular structure and, consequently, the physico-chemical properties of these aggregates can be readily tuned by selecting the pH of the solution during production. In particular, the presence of β-structures typical of amyloids as well as an environment characterized by a lower dielectric constant seem to enhance metal binding affinity revealing that hydrophobicity and water accessibility of the material are key features affecting the adsorption efficiency. Presented results provide new knowledge on how raw plant proteins can be valorised for the production of new biomaterials. This may offer extraordinary opportunities towards the design and production of new tailorable biosorbents which can also be exploited for several cycles of purification with minimal reduction in performance. SYNOPSIS: Innovative, sustainable plant-protein biomaterials with tunable properties are presented as green solution for water purification from lead (II) and the structure-function relationship is discussed.
Collapse
|
2
|
Niu SM, Zhang Q, Sangeetha T, Chen L, Liu LY, Wu P, Zhang C, Yan WM, Liu H, Cui MH, Wang AJ. Evaluation of the effect of biofilm formation on the reductive transformation of triclosan in cathode-modified electrolytic systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161308. [PMID: 36596419 DOI: 10.1016/j.scitotenv.2022.161308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/06/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The performance of electrochemical reduction is often enhanced by electrode modification techniques. However, there is a risk of microbial colonization on the electrode surface to form biofilms in the treatment of actual wastewater with modified electrodes. In this work, the effects of biofilm formation on modified electrodes with reduced graphene oxide (rGO), platinum/carbon (Pt/C), and carbon nanotube (CNT) were investigated in triclosan (TCS) degradation. With biofilm formation, the TCS degradation efficiencies of carbon cloth (CC), rGO@CC, Pt/C@CC, and CNT@CC decayed to 54.53 %, 59.77 %, 69.19 %, and 53.97 %, respectively, compared to the raw electrodes. Confocal laser scanning microscopy and microbial community analysis revealed that the difference in biofilm thickness and activity were the major influencing factors on the discrepant TCS degradation rather than the microbial community structure. The electrochemical performance tests showed that the biofilm formation increased the ohmic resistance by an order of magnitude in rGO@CC, Pt/C@CC, and CNT@CC, and the charge transfer resistance was increased by 2.45, 3.78, and 7.75 times, respectively. The dechlorination and hydrolysis governed the TCS degradation pathway in all electrolysis systems, and the toxicity of electrochemical reductive products was significantly decreased according to the Toxicity Estimation Software Tool analysis. This study presented a systematic assessment of the biofilm formation on modified electrodes in TCS reduction, and the undisputed experimental outcomes were obtained to enrich the knowledge of implementing modified electrodes for practical applications.
Collapse
Affiliation(s)
- Shi-Ming Niu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Qian Zhang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Tai'an Water Conservancy Bureau, Tai'an 271299, PR China
| | - Thangavel Sangeetha
- Department of Energy and Refrigerating Air-Conditioning Engineering and Research Center of Energy Conservation for New Generation of Residential, Commercial, and Industrial Sectors, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Lei Chen
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Lan-Ying Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Ping Wu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Chao Zhang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Wei-Mon Yan
- Department of Energy and Refrigerating Air-Conditioning Engineering and Research Center of Energy Conservation for New Generation of Residential, Commercial, and Industrial Sectors, National Taipei University of Technology, Taipei 10608, Taiwan
| | - He Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Min-Hua Cui
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| |
Collapse
|
3
|
Martínez JSB, González AS, López MC, Ayala FE, Mijangos JC, de Jesús Treviño Reséndez J, Vöng YM, Rocha JM, Bustos EB. Electrochemical degradation of amoxicillin in acidic aqueous medium using TiO 2-based electrodes modified by oxides of transition metals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:42130-42145. [PMID: 34255261 DOI: 10.1007/s11356-021-15315-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
One of the most widely used antibiotics is amoxicillin (AMX), which is the most widely used in humans and animals, but it is discharged metabolically due to its indigestibility. Conventional biological and physicochemical methods for removing AMX from water are not enough to mineralize it; it is only concentrated and transferred to produce new residues that require further processing to remove the new residues. In this research, naked and modified surfaces with TiO2 nanotubes (TiO2,nt) electrophoretically modified with PbO2, IrO2, RuO2, and Ta2O5 were used to evaluate their efficiency in the electrochemical degradation of AMX in acid media (0.1 mol L-1 H2SO4). After their comparison, Pb-Ta 50:50|TiO2,nt|Ti showed the highest removal efficiency of AMX (44.71%) with the lowest specific energy consumption (8.69 ± 0.78 kWh Kg COD-1) and the average instant current efficiency of 26.67 ± 9.19%, in comparison with the others naked and modified surfaces of TiO2,nt∣Ti.
Collapse
Affiliation(s)
- Jaxiry Shamara Barroso Martínez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C. Parque Tecnológico Querétaro s/n, 76703, Sanfandila, Pedro Escobedo, Querétaro, Mexico
| | - Antonia Sandoval González
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C. Parque Tecnológico Querétaro s/n, 76703, Sanfandila, Pedro Escobedo, Querétaro, Mexico
| | - Mónica Cerro López
- Universidad de las Américas de Puebla, Ex hacienda Santa Catarina Mártir s/n, 72810, San Andrés Cholula, Puebla, Mexico
| | - Fabricio Espejel Ayala
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C. Parque Tecnológico Querétaro s/n, 76703, Sanfandila, Pedro Escobedo, Querétaro, Mexico
| | - Jesús Cárdenas Mijangos
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C. Parque Tecnológico Querétaro s/n, 76703, Sanfandila, Pedro Escobedo, Querétaro, Mexico
| | - José de Jesús Treviño Reséndez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C. Parque Tecnológico Querétaro s/n, 76703, Sanfandila, Pedro Escobedo, Querétaro, Mexico
| | - Yunny Meas Vöng
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C. Parque Tecnológico Querétaro s/n, 76703, Sanfandila, Pedro Escobedo, Querétaro, Mexico
| | - Juan Manríquez Rocha
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C. Parque Tecnológico Querétaro s/n, 76703, Sanfandila, Pedro Escobedo, Querétaro, Mexico
| | - Erika Bustos Bustos
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C. Parque Tecnológico Querétaro s/n, 76703, Sanfandila, Pedro Escobedo, Querétaro, Mexico.
| |
Collapse
|