1
|
Puniyanikkottil MA, Mal SS. Polyoxometalate Integrated with Conducting Polymer Nanocomposites for Supercapacitor and Biological Sensor Applications. Inorg Chem 2025; 64:8222-8237. [PMID: 40233350 DOI: 10.1021/acs.inorgchem.5c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Nanostructured redox-active composite electrode materials have been developed for energy storage applications to address conventional carbon-based supercapacitor's limited electrochemical performance. Polyoxometalates (POMs) and conducting polymers (CP) have significantly enhanced the pseudocapacitive activity of these electrode materials. In this study, we synthesized H4[PVW11O40]·xH2O (PVW11) and combined it with polypyrrole (PPy) and polyaniline (PAni) separately to improve energy performance and conduct electrochemical analysis. The PVW11-PPy outperformed the PVW11-PAni composite, achieving an energy density of 49.07 W h kg-1 and a specific capacitance of 405.16 F g-1. The supercapacitor cells showed a cyclic retention of 85.13% and 99.99% Coulombic efficiency after 6000 galvanostatic charge-discharge (GCD) cycles. The PVW11-PPy composite was fabricated into a supercapacitor device that powered a set of 10 LED bulbs for 2 min using an active mass of 76 mg. Additionally, the PVW11-PPy composite material was employed to sense glucose solutions with concentrations ranging from 0.04 to 0.4 mM, providing a sensitivity of 0.325 mA mM-1 cm-2, with limits of detection (LOD) and quantification (LOQ) of 0.381 mM and 1.270 mM, respectively.
Collapse
Affiliation(s)
- Muhammed Anees Puniyanikkottil
- Materials and Catalysis Lab, Department of Chemistry, National Institute of Technology Karnataka, Surathkal 575025, India
| | - Sib Sankar Mal
- Materials and Catalysis Lab, Department of Chemistry, National Institute of Technology Karnataka, Surathkal 575025, India
| |
Collapse
|
2
|
Peng CH, Li G, Li KC, Cui XB. Six polyoxotungstate-based transition metal compounds for electrochemical capacitor application and a comparative analysis of factors affecting capacitances. Dalton Trans 2024; 53:3499-3510. [PMID: 38270509 DOI: 10.1039/d3dt04052f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Six different polyoxotungstate-based transition metal complexes were synthesized, namely [Cu5(2,2'-bpy)5(μ2-Cl)2(PO4)2(H2O)2][HPW12O40]·2H2O (1), [Cu1.5(2,2'-bpy)1.5(inic)2(H2O)1.5]3[H1.5PW12O40]2·16.25H2O (2), [Cu(2,2'-bpy)2]2[SiW12O40]·10H2O (3), [Zn(phen)3]2[PWVWVI11O40]·5H2O (4), [Zn(phen)2(H2O)]2[SiW12O40]·2H2O (5), and [Zn(2,2'-bpy)2]2[SiW12O40] (6) (2,2'-bpy = 2,2'-bipyridine, inic = isonicotinic acid, phen = 1,10-phenanthroline). Compound 1 is based on [HPW12O40]2- anions, which are accommodated within the open channels of a supramolecular network formed by novel Cu-P-Cl coordination clusters. Compound 2 is constructed from [H1.5PW12O40]1.5- and novel [Cu1.5(2,2'-bpy)1.5(inic)2(H2O)1.5]+ coordination fragments, and polyoxoanions are encapsulated within the pores created by the copper coordination fragments, resulting in a unique three-dimensional supramolecular architecture. Compound 3 is a two-dimensional structure formed through the covalent linkage between [SiW12O40]4- and [Cu(2,2'-bpy)2]2+. Compound 4 is a supramolecular architecture formed by [PWVWVI11O40]4- and [Zn(phen)3]2+ coordination fragments, while compound 5 is a supramolecular structure based on POM bi-supported Zn coordination complexes. Compound 6 is a two-dimensional framework structure constituted by [SiW12O40]4- and [Zn(2,2'-bpy)2]2+via covalent interactions. In addition, electrochemical measurement results show that the copper-based tungstate compounds 1-3 and zinc-based tungstate compounds 4-6 exhibit different performances and durabilities as electrochemical capacitors (compound 1 shows the highest specific capacitance of 94.0 F g-1 at 1.5 A g-1, whereas compound 6 maintains the best cycling stability with the capacity retention of 80.7% after 1000 cycles at 4 A g-1.). This study contributes to the development of POM-based transition metal complexes with high capacitance by providing insights into the design and synthesis process.
Collapse
Affiliation(s)
- Cai-Hong Peng
- College of Chemistry and State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130023, P. R. China.
| | - Guanghua Li
- College of Chemistry and State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130023, P. R. China.
| | - Ke-Chang Li
- College of Chemistry and State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130023, P. R. China.
| | - Xiao-Bing Cui
- College of Chemistry and State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130023, P. R. China.
| |
Collapse
|
3
|
Maity S, Biradar BR, Srivastava S, Chandewar PR, Shee D, Pratim Das P, Mal SS. Waste dry cell derived photo-reduced graphene oxide and polyoxometalate composite for solid-state supercapacitor applications. Phys Chem Chem Phys 2023; 25:24613-24624. [PMID: 37665020 DOI: 10.1039/d3cp01872e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
In the modern era, realizing highly efficient supercapacitors (SCs) derived through green routes is paramount to reducing environmental impact. This study demonstrates ways to recycle and reuse used waste dry cell anodes to synthesize nanohybrid electrodes for SCs. Instead of contributing to landfill and the emission of toxic gas to the environment, dry cells are collected and converted into a resource for improved SC cells. The high performance of the electrode was achieved by exploiting battery-type polyoxometalate (POM) clusters infused on a reduced graphene oxide (rGO) surface. Polyoxometalate (K5[α-SiMo2VW9O40]) assisted in the precise bottom-up reduction of graphene oxide (GO) under UV irradiation at room temperature to produce vanadosilicate embedded photo-reduced graphene oxide (prGO-Mo2VW9O40). Additionally, a chemical reduction route for GO (crGO) was trialed to relate to the prGO, followed by the integration of a faradaic monolayer (crGO-Mo2VW9O40). Both composite frameworks exhibit unique hierarchical heterostructures that offer synergic effects between the dual components. As a result, the hybrid material's ion transport kinetics and electrical conductivity enhance the critical electrochemical process at the electrode's interface. The simple co-participation method delivers a remarkable specific capacity (capacitance) of 405 mA h g-1 (1622 F g-1) and 117 mA h g-1 (470 F g-1) for prGO-Mo2VW9O40 and crGO-Mo2VW9O40 nanocomposites alongside high capacitance retentions of 94.5% and 82%, respectively, at a current density of 0.3 A g-1. Furthermore, the asymmetric electrochromic supercapacitor crGO//crGO-Mo2VW9O40 was designed, manifesting a broad operating potential (1.2 V). Finally, the asymmetric electrode material resulted in an enhanced specific capacity, energy, and power of 276.8 C g-1, 46.16 W h kg-1, and 1195 W kg-1, respectively, at a current density of 0.5 A g-1. The electrode materials were tested in the operating of a DC motor.
Collapse
Affiliation(s)
- Sukanya Maity
- Low Dimensional Physics Laboratory, Department of Physics, National Institute of Technology Karnataka, Surathkal 5750525, India.
| | - Bhimaraya R Biradar
- Low Dimensional Physics Laboratory, Department of Physics, National Institute of Technology Karnataka, Surathkal 5750525, India.
| | - Saurabh Srivastava
- Materials and Catalysis Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal 5750525, India.
| | - Pranay R Chandewar
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Debaprasad Shee
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Partha Pratim Das
- Low Dimensional Physics Laboratory, Department of Physics, National Institute of Technology Karnataka, Surathkal 5750525, India.
| | - Sib Sankar Mal
- Materials and Catalysis Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal 5750525, India.
| |
Collapse
|
4
|
Asymmetric polyoxometalate-polypyrrole composite electrode material for electrochemical energy storage supercapacitors. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115856] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Vannathan AA, Thakre D, Ali SR, De M, Banerjee A, Mal SS. Investigations into the supercapacitor activity of bisphosphonate-polyoxovanadate compounds. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Jadhav SA, Dhas SD, Patil KT, Moholkar AV, Patil PS. Polyaniline (PANI)-manganese dioxide (MnO2) nanocomposites as efficient electrode materials for supercapacitors. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Shimoga G, Palem RR, Choi DS, Shin EJ, Ganesh PS, Saratale GD, Saratale RG, Lee SH, Kim SY. Polypyrrole-Based Metal Nanocomposite Electrode Materials for High-Performance Supercapacitors. METALS 2021; 11:905. [DOI: 10.3390/met11060905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metallic nanostructures (MNs) and metal-organic frameworks (MOFs) play a pivotal role by articulating their significance in high-performance supercapacitors along with conducting polymers (CPs). The interaction and synergistic pseudocapacitive effect of MNs with CPs have contributed to enhance the specific capacitance and cyclic stability. Among various conjugated heterocyclic CPs, polypyrrole (PPy) (prevalently knows as “synthetic metal”) is exclusively studied because of its excellent physicochemical properties, ease of preparation, flexibility in surface modifications, and unique molecular structure–property relationships. Numerous researchers attempted to improve the low electronic conductivity of MNs and MOFs, by incorporating conducting PPy and/or used decoration strategy. This was succeeded by fine-tuning this objective, which managed to get outstanding supercapacitive performances. This brief technical note epitomizes various PPy-based metallic hybrid materials with different nano-architectures, emphasizing its technical implications in fabricating high-performance electrode material for supercapacitor applications.
Collapse
Affiliation(s)
- Ganesh Shimoga
- Interaction Laboratory, Future Convergence Engineering, Advanced Technology Research Center, Korea University of Technology and Education, Cheonan-si 31253, Korea
| | - Ramasubba Reddy Palem
- Department of Medical Biotechnology, Dongguk University Biomedical, Campus 32, Seoul 10326, Korea
| | - Dong-Soo Choi
- School of Computer Science, College of Engineering and Information Technology, Semyung University, Jecheon 27136, Korea
| | - Eun-Jae Shin
- Interaction Laboratory, Future Convergence Engineering, Advanced Technology Research Center, Korea University of Technology and Education, Cheonan-si 31253, Korea
| | - Pattan-Siddappa Ganesh
- Interaction Laboratory, Future Convergence Engineering, Advanced Technology Research Center, Korea University of Technology and Education, Cheonan-si 31253, Korea
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Seoul 10326, Korea
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Seoul 10326, Korea
| | - Soo-Hong Lee
- Department of Medical Biotechnology, Dongguk University Biomedical, Campus 32, Seoul 10326, Korea
| | - Sang-Youn Kim
- Interaction Laboratory, Future Convergence Engineering, Advanced Technology Research Center, Korea University of Technology and Education, Cheonan-si 31253, Korea
| |
Collapse
|
8
|
Vannathan A, Kella T, Shee D, Mal SS. One-Pot Synthesis of Polyoxometalate Decorated Polyindole for Energy Storage Supercapacitors. ACS OMEGA 2021; 6:11199-11208. [PMID: 34056275 PMCID: PMC8153914 DOI: 10.1021/acsomega.0c05967] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
The demand for energy storage supercapacitor devices has increased interest in completing all innovative technologies and renewable energy requirements. Here, we report a simple method of two polyoxomolybdate (H4[PVMo11O40] and H5[PV2Mo10O40]) doped polyindole (PIn) composites for electrochemical supercapacitors. The interactions between polyoxomolybdates and PIn were measured by Fourier transform infrared spectroscopy (FTIR), and powder XRD, and stability was measured by thermogravimetry. The field emission scanning microscopy (FESEM) was employed to investigate the morphology of the materials. The electrochemical measurements show that the PIn/PV2Mo10 electrode exhibits a higher capacitance of 198.09 F/g with an energy density of 10.19 Wh/kg and a power density of 198.54 W/kg at 0.2 A/g current density than the PIn/PVMo11 electrode. Both electrodes show a pseudocapacitance behavior due to the doping of redox-active polyoxomolybdates on the PIn surface and enhance the electrochemical properties. The electrodes' capacitive nature was measured by electrochemical impedance spectroscopy (EIS), which shows that the PIn/PVMo11 electrode has a resistive nature within the electrode-electrode interface. Moreover, the PIn/PV2Mo10 electrode offers remarkable cycle stability, retaining ∼84% of its capacitance after 10,000 cycles (∼83% for the PIn/PVMo11 electrode). The higher specific capacitance, faster charge/discharge rates, and higher cycle stability make them promising electrodes in supercapacitors.
Collapse
Affiliation(s)
- Anjana
Anandan Vannathan
- Materials
and Catalysis Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal 575025, India
| | - Tatinaidu Kella
- Department
of Chemical Engineering, Indian Institute
of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Debaprasad Shee
- Department
of Chemical Engineering, Indian Institute
of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Sib Sankar Mal
- Materials
and Catalysis Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal 575025, India
| |
Collapse
|
9
|
Zhuang Y, Niu Q, Wu W, Yan D, Huang J, Peng S, Wang J, Zhuo R, Wu Z, Cao G. Enhanced supercapacitive properties of hydrohausmannite by in-situ polymerization of polypyrrole. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|