1
|
Sun C, Zhang H, Mu P, Wang G, Luo C, Zhang X, Gao C, Zhou X, Cui G. Covalently Cross-Linked Chemistry of a Three-Dimensional Network Binder at Limited Dosage Enables Practical Si/C Composite Electrode Applications. ACS NANO 2024; 18:2475-2484. [PMID: 38206054 DOI: 10.1021/acsnano.3c11286] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Currently, Si (or SiOx, 1 < x < 2) and graphite composite (Si/C) electrodes (e.g., Si/C450 and Si/C600 with specific capacities of 450 and 600 mAh g-1 at 0.1 C, respectively) have become the most promising alternative to traditional graphite anodes toward high-energy lithium-ion battery (LIB) applications by virtue of their higher specific capacity compared to graphite ones and improved cycle performance compared to Si (or SiOx) ones. However, such composite electrodes remain challenging to practical for implementation owing to electrode structure disintegration and interfacial instability caused by a large volume change of inner Si-based particles. Herein, we develop a covalent-bond cross-linking network binder for Si/C450 and Si/C600 electrodes via reversible addition-fragmentation chain transfer (RAFT) polymerization. The as-developed binder with a 3 mol % cross-linker of other monomers [termed P(SH-BA3%)] achieves improved mechanical and adhesive properties and decreased Si/C anode volume expansion, compared to the linear binder counterpart. Impressively, the P(SH-BA3%) binder at only 3 wt % dosage enables 83.56% capacity retention after 600 cycles at 0.5 C in Si/C450 anode based half-cells and retains 86.42% capacity retention at 0.3 C after 200 cycles and 80.95% capacity retention at 0.5 C after 300 cycles in LiNi0.8Co0.1Mn0.1O2 cathode (15 mg cm-2) based homemade soft package full cells. This work provides insight into binder cross-linking chemistry under limited dosage and enlightens cross-linking binder design toward practical Si/C electrode applications.
Collapse
Affiliation(s)
- Chenghao Sun
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Huanrui Zhang
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Pengzhou Mu
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Guixin Wang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Cizhen Luo
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaohu Zhang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Chenhui Gao
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Xinhong Zhou
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Guanglei Cui
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| |
Collapse
|
2
|
de Vasconcelos LS, Xu R, Xu Z, Zhang J, Sharma N, Shah SR, Han J, He X, Wu X, Sun H, Hu S, Perrin M, Wang X, Liu Y, Lin F, Cui Y, Zhao K. Chemomechanics of Rechargeable Batteries: Status, Theories, and Perspectives. Chem Rev 2022; 122:13043-13107. [PMID: 35839290 DOI: 10.1021/acs.chemrev.2c00002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chemomechanics is an old subject, yet its importance has been revived in rechargeable batteries where the mechanical energy and damage associated with redox reactions can significantly affect both the thermodynamics and rates of key electrochemical processes. Thanks to the push for clean energy and advances in characterization capabilities, significant research efforts in the last two decades have brought about a leap forward in understanding the intricate chemomechanical interactions regulating battery performance. Going forward, it is necessary to consolidate scattered ideas in the literature into a structured framework for future efforts across multidisciplinary fields. This review sets out to distill and structure what the authors consider to be significant recent developments on the study of chemomechanics of rechargeable batteries in a concise and accessible format to the audiences of different backgrounds in electrochemistry, materials, and mechanics. Importantly, we review the significance of chemomechanics in the context of battery performance, as well as its mechanistic understanding by combining electrochemical, materials, and mechanical perspectives. We discuss the coupling between the elements of electrochemistry and mechanics, key experimental and modeling tools from the small to large scales, and design considerations. Lastly, we provide our perspective on ongoing challenges and opportunities ranging from quantifying mechanical degradation in batteries to manufacturing battery materials and developing cyclic protocols to improve the mechanical resilience.
Collapse
Affiliation(s)
| | - Rong Xu
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Zhengrui Xu
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Jin Zhang
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Nikhil Sharma
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sameep Rajubhai Shah
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jiaxiu Han
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xiaomei He
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xianyang Wu
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hong Sun
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shan Hu
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Madison Perrin
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xiaokang Wang
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yijin Liu
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Feng Lin
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Kejie Zhao
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|