Liang X, Jiang X, Lan L, Zeng S, Huang M, Huang D. Preparation and Study of a Simple Three-Matrix Solid Electrolyte Membrane in Air.
NANOMATERIALS (BASEL, SWITZERLAND) 2022;
12:3069. [PMID:
36080106 PMCID:
PMC9458227 DOI:
10.3390/nano12173069]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Solid-state lithium batteries have attracted much attention due to their special properties of high safety and high energy density. Among them, the polymer electrolyte membrane with high ionic conductivity and a wide electrochemical window is a key part to achieve stable cycling of solid-state batteries. However, the low ionic conductivity and the high interfacial resistance limit its practical application. This work deals with the preparation of a composite solid electrolyte with high mechanical flexibility and non-flammability. Firstly, the crystallinity of the polymer is reduced, and the fluidity of Li+ between the polymer segments is improved by tertiary polymer polymerization. Then, lithium salt is added to form a solpolymer solution to provide Li+ and anion and then an inorganic solid electrolyte is added. As a result, the composite solid electrolyte has a Li+ conductivity (3.18 × 10-4 mS cm-1). The (LiNi0.5Mn1.5O4)LNMO/SPLL (PES-PVC-PVDF-LiBF4-LAZTP)/Li battery has a capacity retention rate of 98.4% after 100 cycles, which is much higher than that without inorganic oxides. This research provides an important reference for developing all-solid-state batteries in the greenhouse.
Collapse