1
|
Wang Y, Su C, Liang X, Li X, Jing M, Wang Q, Huang R, Yin F, Zhang G, Liu T, Qu D, Zhang L, Pan M, Liu F, Guo Q, Gao J, Wang L, Wu W. Diagnosis of PD-L1 related non-small cell lung cancer from micro-liters blood. Talanta 2025; 293:128077. [PMID: 40188671 DOI: 10.1016/j.talanta.2025.128077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 05/14/2025]
Abstract
Early diagnosis of cancer can significantly decrease the mortality rate, and improve the effectiveness of treatment. However, early diagnosis leads to an increased and additional burden of medical resources. Lung cancer with the highest incidence and mortality rate of cancer presents a great challenge to the health of human beings. Non-small cell lung cancer (NSCLC), accounting for approximately 85 % of all lung cancer, desires a diagnostics method with low-cost, high accuracy, easy-operation, and fast speed. Recent research highlights the diagnostic potential of exosomes, particularly programmed death-ligand 1 (PD-L1) exosomes, which play a critical role in NSCLC by facilitating tumor cell immune evasion. This study introduces an organic electrochemical transistor (OECT)-based biosensor equipped with a carbon nanofibers-gold nanoparticles (CNFs-GNPs) gate electrode with super high surface area for detecting PD-L1 exosomes from micro-liters blood samples. The optimal stability, biocompatibility, and detection accuracy are systematically studied. The OECTs realize high sensitivity and selectivity, characterized by a transconductance of 66.7 mS, a rapid response time of about 42 ms, and less than 6 % current change after 2000 s of cycling. By immobilizing the PD-L1 aptamer on CNFs-GNPs via gold-sulfur bonding, the biosensor detects PD-L1 exosomes with a sensitivity as low as 10 pg/mL. Clinical trials using micro-liters blood has shown distinct differences between NSCLC patients and healthy individuals, suggesting this technology could significantly enhance early NSCLC detection and expand to other cancer diagnostics.
Collapse
Affiliation(s)
- Yuanzhang Wang
- School of Advanced Materials and Nanotechnology, Key Laboratory of Artificial Olfaction of Shaanxi Higher Education Institutes, Xidian University, Shaanxi, 710126, China
| | - Chen Su
- School of Advanced Materials and Nanotechnology, Key Laboratory of Artificial Olfaction of Shaanxi Higher Education Institutes, Xidian University, Shaanxi, 710126, China
| | - Xiao Liang
- Department of Thoracic Surgery, Tangdu Hospital of the Air Force Military Medical University, Shaanxi 710038, China
| | - Xiaoxiao Li
- School of Advanced Materials and Nanotechnology, Key Laboratory of Artificial Olfaction of Shaanxi Higher Education Institutes, Xidian University, Shaanxi, 710126, China
| | - Minxuan Jing
- Department of Thoracic Surgery, Tangdu Hospital of the Air Force Military Medical University, Shaanxi 710038, China
| | - Qi Wang
- School of Advanced Materials and Nanotechnology, Key Laboratory of Artificial Olfaction of Shaanxi Higher Education Institutes, Xidian University, Shaanxi, 710126, China.
| | - Rou Huang
- School of Advanced Materials and Nanotechnology, Key Laboratory of Artificial Olfaction of Shaanxi Higher Education Institutes, Xidian University, Shaanxi, 710126, China; Department of Thoracic Surgery, Tangdu Hospital of the Air Force Military Medical University, Shaanxi 710038, China
| | - Feiyang Yin
- Department of Thoracic Surgery, Tangdu Hospital of the Air Force Military Medical University, Shaanxi 710038, China
| | - Guangjian Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China
| | - Tianqing Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China
| | - Danyao Qu
- School of Advanced Materials and Nanotechnology, Key Laboratory of Artificial Olfaction of Shaanxi Higher Education Institutes, Xidian University, Shaanxi, 710126, China
| | - Lu Zhang
- School of Advanced Materials and Nanotechnology, Key Laboratory of Artificial Olfaction of Shaanxi Higher Education Institutes, Xidian University, Shaanxi, 710126, China
| | - Minghu Pan
- School of Physics and Information Technology, Shaanxi Normal University, Shaanxi 710119, China
| | - Fei Liu
- School of Advanced Materials and Nanotechnology, Key Laboratory of Artificial Olfaction of Shaanxi Higher Education Institutes, Xidian University, Shaanxi, 710126, China
| | - Quanmin Guo
- School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Jianzhi Gao
- School of Physics and Information Technology, Shaanxi Normal University, Shaanxi 710119, China.
| | - Lei Wang
- Department of Thoracic Surgery, Tangdu Hospital of the Air Force Military Medical University, Shaanxi 710038, China.
| | - Weiwei Wu
- School of Advanced Materials and Nanotechnology, Key Laboratory of Artificial Olfaction of Shaanxi Higher Education Institutes, Xidian University, Shaanxi, 710126, China.
| |
Collapse
|
2
|
Terzapulo X, Dyussupova A, Ilyas A, Boranova A, Shevchenko Y, Mergenbayeva S, Filchakova O, Gaipov A, Bukasov R. Detection of Cancer Biomarkers: Review of Methods and Applications Reported from Analytical Perspective. Crit Rev Anal Chem 2025:1-46. [PMID: 40367278 DOI: 10.1080/10408347.2025.2497868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
One in five deaths in developed countries is related to cancer. The cancer prevalence is likely to grow with aging population. The affordable and accurate early diagnostics of cancer based on detection of cancer biomarkers at low concentration during its early stages is one of the most efficient way to decrease mortality and human suffering from cancer. The data from 201 analytical papers are tabulated in 9 tables, illustrated in 8 figures and used for comparative analysis of methods applied for cancer biomarker detection, including polymerase chain reaction, Loop-mediated isothermal amplification (LAMP), mass spectrometry, enzyme-linked immunosorbent assay, electroanalytical methods, immunoassays, surface enhanced Raman scattering, Fourier Transform Infrared and others in terms of above-mentioned performance parameters. Median and/or average limit of detection (LOD) are calculated and compared between different analytical methods. We also described and compared LOD of the methods used for detection of three frequently detected cancer biomarkers: carcinoembryonic antigen, prostate-specific antigen and alpha-fetoprotein. Among those methods of detection, the reported electrochemical sensors often demonstrate relatively high sensitivity/low LOD while they often have a moderate instrumental cost and fast time to results. The review tabulates, compares and discusses analytical papers, which report LOD of cancer biomarkers and comprehensive quantitative comparison of various analytical methods is made. The discussion of those techniques applied for cancer biomarker detection included brief summary of pro and cons for each of those methods.
Collapse
Affiliation(s)
- Xeniya Terzapulo
- Chemistry Department, School of Sciences and Humanities, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Aigerim Dyussupova
- Chemistry Department, School of Sciences and Humanities, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Aisha Ilyas
- Chemistry Department, School of Sciences and Humanities, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Aigerim Boranova
- Chemistry Department, School of Sciences and Humanities, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Yegor Shevchenko
- Chemistry Department, School of Sciences and Humanities, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Saule Mergenbayeva
- Chemistry Department, School of Sciences and Humanities, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Olena Filchakova
- Biology Department, School of Sciences and Humanities, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Abduzhappar Gaipov
- Department of Medicine, Nazarbayev University School of Medicine, Astana, Republic of Kazakhstan
| | - Rostislav Bukasov
- Chemistry Department, School of Sciences and Humanities, Nazarbayev University, Astana, Republic of Kazakhstan
| |
Collapse
|
3
|
G SC, Gokavi L, Ravikumar CH, Balarkishna RG. Antibody-modified 2D MXene nanosheet probes for selective, picolevel detection of cancer biomarkers. Biosens Bioelectron 2025; 271:117028. [PMID: 39647410 DOI: 10.1016/j.bios.2024.117028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
Cancer biomarkers are crucial indicators found in clinical samples, playing a key role in early detection, diagnosis, and treatment of cancer. Detecting these biomarkers with high sensitivity is essential for early diagnosis, especially in aggressive cancers like lung cancer, which is the leading cause of cancer-related deaths. Carcinoembryonic antigen (CEA) is a critical biomarker for lung cancer, and its detection aids in identifying the disease at an early stage. Electrochemical sensing, known for its high sensitivity and rapid response, has shown great promise in cancer biomarker detection. MXenes, two-dimensional materials composed of carbides and nitrides, offer excellent electrochemical performance due to their high surface area and conductivity. In this study, MXenes were modified via hydrothermal treatment to produce MXene nanosheets (MNS) with increased interlayer spacing, enhancing their electron transfer capabilities. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) revealed the superior electrochemical properties of MNS compared to pristine MXene. These MNS were functionalized with CEA-specific antibodies using EDC-NHS chemistry, creating a highly specific electrochemical biosensor for CEA detection. The sensor exhibited a remarkable limit of detection at the picogram level and was validated through real-time blood analysis, achieving a 95% recovery rate. This MNS-based biosensor demonstrates significant potential for clinical diagnostics, particularly for the early detection of cancer biomarkers, paving the way for improved cancer treatment outcomes.
Collapse
Affiliation(s)
- Sanjayan C G
- Centre for Nano and Material Sciences, Jain global Campus, Jain (Deemed-to-be-University), Jakkasandra Post Ramanagaram Dist, 562112, India
| | - Leelavathi Gokavi
- Centre for Nano and Material Sciences, Jain global Campus, Jain (Deemed-to-be-University), Jakkasandra Post Ramanagaram Dist, 562112, India
| | - Chandan Hunsur Ravikumar
- Centre for Nano and Material Sciences, Jain global Campus, Jain (Deemed-to-be-University), Jakkasandra Post Ramanagaram Dist, 562112, India.
| | - R Geetha Balarkishna
- Centre for Nano and Material Sciences, Jain global Campus, Jain (Deemed-to-be-University), Jakkasandra Post Ramanagaram Dist, 562112, India.
| |
Collapse
|
4
|
Hadian M, Rabbani M, Shariati L, Ghasemi F, Presley JF, Sanati A. MXene Nanoconfinement of SAM-Modified Molecularly Imprinted Electrochemical Biosensor for Point-of-Care Monitoring of Carcinoembryonic Antigen. ACS Sens 2025; 10:857-867. [PMID: 39671262 DOI: 10.1021/acssensors.4c02420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2024]
Abstract
The high rate of cancer worldwide and the heavy costs imposed on governments and humanity have always motivated researchers to develop point-of-care (POC) biosensors for easy diagnosis and monitoring of cancer treatment. Herein, we report on a label-free impedimetric biosensor based on Ti3C2Tx MXene and imprinted ortho-phenylenediamine (o-PD) for the detection of carcinoembryonic antigen (CEA), a biomarker for various cancers surveillance, especially colorectal cancer (CRC). Accordingly, MXene was drop-casted on the surface of a disposable silver electrode to increase the sensitivity and create high-energy nanoareas on the surface, which are usable for protein immobilization and detection. A self-assembled monolayer (SAM) was exploited for oriented CEA immobilization on the MXene-modified electrode. The monomer-protein interaction and successful protein removal were confirmed by molecular docking and atomic force microscopy (AFM) investigations to evaluate the quality of the fabricated molecularly imprinted polymer (MIP). Also, the role of MXene in increasing the electrical field inside the nanoareas was simulated using COMSOL Multiphysics software. A suitable limit of detection (9.41 ng/mL), an appropriate linear range of detection (10 to 100 ng/mL) in human serum, and a short detection time (10 min) resulted from the use of SAM/MIP next to MXene. This biosensor presented outstanding repeatability (97.60%) and reproducibility (98.61%). Moreover, acceptable accuracy (between 93.04 and 116.04%) in clinical serum samples was obtained compared with immunoassay results, indicating the high potential of our biosensor for real sample analysis. This biomimetic and disposable sensor provides a cost-effective method for facile and POC monitoring of cancer patients during treatment.
Collapse
Affiliation(s)
- Mina Hadian
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan 81746-73441, Iran
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Mohsen Rabbani
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan 81746-73441, Iran
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Fahimeh Ghasemi
- Department of Bioinformatics and Systems Biology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - John F Presley
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Alireza Sanati
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| |
Collapse
|
5
|
Suleimenova A, Frasco MF, Sales MGF. An ultrasensitive paper-based SERS sensor for detection of nucleolin using silver-nanostars, plastic antibodies and natural antibodies. Talanta 2024; 279:126543. [PMID: 39018947 DOI: 10.1016/j.talanta.2024.126543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
A state-of-the-art, ultrasensitive, paper-based SERS sensor has been developed using silver nanostars (AgNSs) in combination with synthetic and natural antibodies. A key component of this innovative sensor is the plastic antibody, which was synthesized using molecularly imprinted polymer (MIP) technology. This ground-breaking combination of paper substrates/MIPs with AgNSs, which is similar to a sandwich immunoassay, is used for the first time with the aim of SERS detection and specifically targets nucleolin (NCL), a cancer biomarker. The sensor device was carefully fabricated by synthesizing a polyacrylamide-based MIP on cellulose paper (Whatman Grade 1 filter) by photopolymerization. The binding of NCL to the MIP was then confirmed by natural antibody binding using a sandwich assay for quantitative SERS analysis. To facilitate the detection of NCL, antibodies were pre-bound to AgNSs with a Raman tag so that the SERS signal could indicate the presence of NCL. The composition of the sensory layers/materials was meticulously optimized. The intensity of the Raman signal at ∼1078 cm-1 showed a linear trend that correlated with increasing concentrations of NCL, ranging from 0.1 to 1000 nmol L-1, with a limit of detection down to 0.068 nmol L-1 in human serum. The selectivity of the sensor was confirmed by testing its analytical response in the presence of cystatin C and lysozyme. The paper-based SERS detection system for NCL is characterized by its simplicity, sustainability, high sensitivity and stability and thus embodies essential properties for point-of-care applications. This approach is promising for expansion to other biomarkers in various fields, depending on the availability of synthetic and natural antibodies.
Collapse
Affiliation(s)
- Akmaral Suleimenova
- BioMark, CEMMPRE, ARISE, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal; CENIMAT, i3N, Department of Materials Science, School of Science and Technology, NOVA University of Lisbon and CEMOP/UNINOVA, Caparica, Portugal
| | - Manuela F Frasco
- BioMark, CEMMPRE, ARISE, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal.
| | - M Goreti F Sales
- BioMark, CEMMPRE, ARISE, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
6
|
Wang Y, Wei W, Han Z, Guan X, Yang Y, Li T, Chang Y, Duan X. Acoustic Streaming Tunnel Enables Particle Velocity Stretching in Multiplex Flow Cytometry. Anal Chem 2024; 96:16397-16405. [PMID: 39359114 DOI: 10.1021/acs.analchem.4c03947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Multiplexed flow cytometry, known for its powerful high-throughput identification capability, is widely applied across various biomedical and clinical fields. However, classical flow cytometry relies on multichannel lasers and detectors, which are significant in cost and size, limiting their application in miniaturized assays. Herein, we developed an acoustic streaming-based flow cytometry technique that focuses on multisized microbeads flowing sheathlessly. This method enables the discrimination of particle types and the quantification of target protein concentrations using only a single detector. Microbeads of different sizes exhibit distinct behaviors in the continuous acoustic streaming tunnel, leading to an increased velocity difference during their transition under the laser spot. Consequently, a size detection method based on "velocity stretching" has been established. A multiplex assay of three proteins: cardiac troponin I, creatine kinase-MB and myoglobin, in acute myocardial infarction is performed to validate the feasibility and evaluate the performance of the system. This new multiplexed flow cytometry strategy is expected to enable low-cost and onsite detection of multiple biomarkers.
Collapse
Affiliation(s)
- Yaping Wang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China
| | - Wei Wei
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China
| | - Ziyu Han
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong SAR 999077, China
| | - Xieruiqi Guan
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China
| | - Yang Yang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China
| | - Tiechuan Li
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China
| | - Ye Chang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China
| |
Collapse
|
7
|
Lipovka A, Fatkullin M, Averkiev A, Pavlova M, Adiraju A, Weheabby S, Al-Hamry A, Kanoun O, Pašti I, Lazarevic-Pasti T, Rodriguez RD, Sheremet E. Surface-Enhanced Raman Spectroscopy and Electrochemistry: The Ultimate Chemical Sensing and Manipulation Combination. Crit Rev Anal Chem 2024; 54:110-134. [PMID: 35435777 DOI: 10.1080/10408347.2022.2063683] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
One of the lessons we learned from the COVID-19 pandemic is that the need for ultrasensitive detection systems is now more critical than ever. While sensors' sensitivity, portability, selectivity, and low cost are crucial, new ways to couple synergistic methods enable the highest performance levels. This review article critically discusses the synergetic combinations of optical and electrochemical methods. We also discuss three key application fields-energy, biomedicine, and environment. Finally, we selected the most promising approaches and examples, the open challenges in sensing, and ways to overcome them. We expect this work to set a clear reference for developing and understanding strategies, pros and cons of different combinations of electrochemical and optical sensors integrated into a single device.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Olfa Kanoun
- Technische Universität Chemnitz, Chemnitz, Germany
| | - Igor Pašti
- Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Tamara Lazarevic-Pasti
- Department of Physical Chemistry, "VINČA" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Vinca, Serbia
| | | | | |
Collapse
|
8
|
Öndeş B, Kilimci U, Uygun M, Aktaş Uygun D. Determination of carcinoembryonic antigen (CEA) by label-free electrochemical immunosensor using functionalized boron nitride nanosheets. Bioelectrochemistry 2024; 157:108676. [PMID: 38431993 DOI: 10.1016/j.bioelechem.2024.108676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
In this study, a simple, specific and sensitive immunosensor for CEA detection was prepared based on BN nanosheets. Lewis acid-base interaction was sufficient for the immobilization of anti-CEA used as an antibody on the electrode surface without an activation agent. This immunosensor could be used for CEA determination without the need to use any label or secondary antibody. With its epedance-based recognition mechanism, this immunosensor offered a low LOD value of 0.017 ng/mL and a wide measurement range of 0.1-500 ng/mL and could be used for a long time. The analytical performance of this immunosensor is higher than the biosensors prepared in the literature. Compared to commercially available kits, it is attractive because it is cheap, simple and analyzes in a short time. This immunosensor, which has high selectivity against CEA in the presence of competitive agents in commercial human serum, has a high potential for clinical applications.
Collapse
Affiliation(s)
- Baha Öndeş
- Aydın Adnan Menderes University, Faculty of Science, Department of Chemistry, Aydın, Türkiye
| | - Ulviye Kilimci
- Aydın Adnan Menderes University, Faculty of Science, Department of Chemistry, Aydın, Türkiye
| | - Murat Uygun
- Aydın Adnan Menderes University, Faculty of Science, Department of Chemistry, Aydın, Türkiye
| | - Deniz Aktaş Uygun
- Aydın Adnan Menderes University, Faculty of Science, Department of Chemistry, Aydın, Türkiye.
| |
Collapse
|
9
|
Saputra HA, Jannath KA, Kim KB, Park DS, Shim YB. Conducting polymer composite-based biosensing materials for the diagnosis of lung cancer: A review. Int J Biol Macromol 2023; 252:126149. [PMID: 37582435 DOI: 10.1016/j.ijbiomac.2023.126149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/17/2023]
Abstract
The development of a simple and fast cancer detection method is crucial since early diagnosis is a key factor in increasing survival rates for lung cancer patients. Among several diagnosis methods, the electrochemical sensor is the most promising one due to its outstanding performance, portability, real-time analysis, robustness, amenability, and cost-effectiveness. Conducting polymer (CP) composites have been frequently used to fabricate a robust sensor device, owing to their excellent physical and electrochemical properties as well as biocompatibility with nontoxic effects on the biological system. This review brings up a brief overview of the importance of electrochemical biosensors for the early detection of lung cancer, with a detailed discussion on the design and development of CP composite materials for biosensor applications. The review covers the electrochemical sensing of numerous lung cancer markers employing composite electrodes based on the conducting polyterthiophene, poly(3,4-ethylenedioxythiophene), polyaniline, polypyrrole, molecularly imprinted polymers, and others. In addition, a hybrid of the electrochemical biosensors and other techniques was highlighted. The outlook was also briefly discussed for the development of CP composite-based electrochemical biosensors for POC diagnostic devices.
Collapse
Affiliation(s)
- Heru Agung Saputra
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Khatun A Jannath
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Kwang Bok Kim
- Digital Health Care R&D Department, Korea Institute of Industrial Technology, Cheonan 31056, Republic of Korea
| | - Deog-Su Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Yoon-Bo Shim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
10
|
Shi Y, Li T, Zhao L, Liu Y, Ding K, Li D, He P, Jiang D, Liu J, Zhou H. Ultrathin MXene nanosheet-based TiO2/CdS heterostructure as a photoelectrochemical sensor for detection of CEA in human serum samples. Biosens Bioelectron 2023; 230:115287. [PMID: 37012191 DOI: 10.1016/j.bios.2023.115287] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/18/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
To develop highly accurate and ultrasensitive strategies is of great importance for the clinical measurement, in particular, the detection of cancer biomarkers. Herein, we synthesized an ultrasensitive TiO2/MXene/CdS QDs (TiO2/MX/CdS) heterostructure as a photoelectrochemical immunosensor, which favors energy levels matching and fast electron transfer from CdS to TiO2 in the help of ultrathin MXene nanosheet. Dramatic photocurrent quenching can be observed upon incubation of the TiO2/MX/CdS electrode by Cu2+ solution from 96-well microplate, which caused by the formation of CuS and subsequent CuxS (x = 1, 2), reducing the absorption of light and boosting the electron-hole recombination upon irradiation. As a result, the as-prepared biosensor demonstrates a linearly increased photocurrent quenching percentage (Q%) value with CEA concentration ranging from 1 fg/mL to 10 ng/mL, as well as a low detection limit of 0.24 fg/mL. Benefit from its excellent stability, high selectivity and good reproducibility of as-prepared PEC immunosensor, we believe that this proposed strategy might provide new opportunities for clinical diagnosis of CEA and other tumor markers.
Collapse
|
11
|
Ma J, Xue D, Xu T, Wei G, Gu C, Zhang Y, Jiang T. Nonmetallic SERS-based biosensor for ultrasensitive and reproducible immunoassay of ferritin mediated by magnetic molybdenum disulfide nanoflowers and black phosphorus nanosheets. Colloids Surf B Biointerfaces 2023; 227:113338. [PMID: 37167693 DOI: 10.1016/j.colsurfb.2023.113338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/31/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023]
Abstract
To improve the curability of cancer patients, it is essential to propose an early diagnosis technology with ultra-high sensitivity and reliable biocompatibility. Herein, a sophisticated nonmetallic SERS-based immunosensor, comprised by a MoS2 @Fe3O4 nanoflower-based immunoprobe with magnetism and a black phosphorus (BP) nanosheet-based immunosubstrate, was proposed for the specific in-situ monitoring of ferritin (FER). The sandwich immunosensor was endowed with an excellent SERS performance mainly ascribed to a synergistic chemical enhancement as well as an additional electrostatic adsorption effect, achieving a limit of detection down to 7.3 × 10-5 μg/mL. Particularly, all the Raman label, target FER, and anti-FER could be completely degraded within 70 min under visible light irradiation owing to the favorable photocatalytic activities of MoS2 and BP which could be then effectively separated and collected with the assistance of an external magnet. Such a recyclable nonmetallic immunosensor holds great potential and practicality in the clinical screening of cancer.
Collapse
Affiliation(s)
- Jiali Ma
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Danni Xue
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Tao Xu
- Department of Pharmacy, Ningbo City First Hospital, Ningbo, 315211, Zhejiang, PR China
| | - Guodong Wei
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xian 710021, Shaanxi, PR China
| | - Chenjie Gu
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Yongling Zhang
- College of Information &Technology, Jilin Normal University, Siping 136000, Jilin, PR China.
| | - Tao Jiang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China.
| |
Collapse
|
12
|
Early detection of tumour-associated antigens: Assessment of point-of-care electrochemical immunoassays. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
13
|
Cathodic electrochemiluminescence of Ru(bpy)32+ based on porous partially reduced graphene oxide for detecting carcinoembryonic antigen. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2022.117055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Design of highly selective, and sensitive screen-printed electrochemical sensor for detection of uric acid with uricase immobilized polycaprolactone/polyethylene imine electrospun nanofiber. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
15
|
Randviir EP, Banks CE. A review of electrochemical impedance spectroscopy for bioanalytical sensors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4602-4624. [PMID: 36342043 DOI: 10.1039/d2ay00970f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Electrochemical impedance spectroscopy (EIS) is a powerful technique for both quantitative and qualitative analysis. This review uses a systematic approach to examine how electrodes are tailored for use in EIS-based applications, describing the chemistries involved in sensor design, and discusses trends in the use of bio-based and non-bio-based electrodes. The review finds that immunosensors are the most prevalent sensor strategy that employs EIS as a quantification technique for target species. The review also finds that bio-based electrodes, though capable of detecting small molecules, are most applicable for the detection of complex molecules. Non-bio-based sensors are more often employed for simpler molecules and less often have applications for complex systems. We surmise that EIS has advanced in terms of electrode designs since our last review on the subject, although there are still inconsistencies in terms of equivalent circuit modelling for some sensor types. Removal of ambiguity from equivalent circuit models may help advance EIS as a choice detection method, allowing for lower limits of detection than traditional electrochemical methods such as voltammetry or amperometry.
Collapse
Affiliation(s)
- Edward P Randviir
- Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, Lancs, UK.
| | - Craig E Banks
- Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, Lancs, UK.
| |
Collapse
|
16
|
Ju Y, Tang Q, Yang Y, Zeng Y, Zhai Y, Wang H, Li Z, Li L. A label-free fluorescent aptasensor based on the AIE effect and CoOOH for ultrasensitive determination of carcinoembryonic antigen. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4576-4582. [PMID: 36341556 DOI: 10.1039/d2ay01146h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Highly sensitive and specific detection of cancer markers (such as carcinoembryonic antigen) is very important for early diagnosis and treatment of cancer. Herein, we developed a label-free fluorescent aptamer biosensor based on the aggregation-induced emission (AIE) effect and hydroxycobalt oxide (CoOOH) platform, and used it to detect carcinoembryonic antigen (CEA) with high sensitivity and specificity. Fluorescent ionic liquid Compound B can combine with a CEA aptamer (CEA-Apt) through electrostatic attraction and hydrophobic interaction to form an ionic liquid/aptamer (CEA-Apt/B) complex and produce the AIE effect, thereby enhancing the fluorescence intensity of B. CEA-Apt/B was adsorbed on the surface of CoOOH when CoOOH was added to the buffer solution, and the fluorescence of B was quenched. After adding CEA to the solution, CEA-Apt/B bound to CEA and separated from the surface of CoOOH because CEA-Apt had stronger affinity for CEA, resulting in fluorescence recovery of B. In the level range of 0.67-10000 pg mL-1, the fluorescence recovery intensity of the sensor had an excellent linear relationship with the level of CEA, and its LOD was 0.2 pg mL-1 (S/N = 3). In addition, the sensor had good selectivity and can be directly used to detect CEA in human serum with high accuracy.
Collapse
Affiliation(s)
- Yulong Ju
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Qiukai Tang
- Clinical Laboratory, Zhejiang Sian International Hospital, Jiaxing 314031, Zhejiang, China
| | - Yiwen Yang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Yanbo Zeng
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Yunyun Zhai
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Hailong Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Zuguang Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Lei Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| |
Collapse
|
17
|
Ultrasensitive electrochemical detection of hepatitis b virus surface antigen based on hybrid nanomaterials. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Pollap A, Świt P. Recent Advances in Sandwich SERS Immunosensors for Cancer Detection. Int J Mol Sci 2022; 23:ijms23094740. [PMID: 35563131 PMCID: PMC9105793 DOI: 10.3390/ijms23094740] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 12/04/2022] Open
Abstract
Cancer has been one of the most prevalent diseases around the world for many years. Its biomarkers are biological molecules found in the blood or other body fluids of people with cancer diseases. These biomarkers play a crucial role not only in the diagnosis of cancer diseases, but also in risk assessment, selection of treatment methods, and tracking its progress. Therefore, highly sensitive and selective detection and determination of cancer biomarkers are essential from the perspective of oncological diagnostics and planning the treatment process. Immunosensors are special types of biosensors that are based on the recognition of an analyte (antigen) by an antibody. Sandwich immunosensors apply two antibodies: a capture antibody and a detection antibody, with the antigen ‘sandwiched’ between them. Immunosensors’ advantages include not only high sensitivity and selectivity, but also flexible application and reusability. Surface-enhanced Raman spectroscopy, known also as the sensitive and selective method, uses the enhancement of light scattering by analyte molecules adsorbed on a nanostructured surface. The combination of immunosensors with the SERS technique further improves their analytical parameters. In this article, we followed the recent achievements in the field of sandwich SERS immunosensors for cancer biomarker detection and/or determination.
Collapse
Affiliation(s)
| | - Paweł Świt
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, 9 Szkolna Street, 40-006 Katowice, Poland
- Correspondence:
| |
Collapse
|
19
|
Poly(Thionine)-Modified Screen-Printed Electrodes for CA 19-9 Detection and Its Properties in Raman Spectroscopy. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10030092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polythionine (PTH) is an electroactive compound known for its excellent electron transfer capacity. It has stable and redox centers in its structure, and it can also be generated by electropolymerization of thionine (TH). Due to its properties, it has been used in a large number of applications, including the construction of electrochemical biosensors. In this work, PTH is explored for its ability to generate electrons, which allows it to act as an electrochemical probe in a biosensor that detects CA 19-9 on two different substrates, carbon and gold, using differential pulse voltammetry (DPV) as a reading technique in phosphate buffer (PhB). The analytical features of the resulting electrodes are given, showing linear ranges from 0.010 to 10 U/mL. The Raman spectra of PTH films on gold (substrates or nanostars) and carbon (substrates) are also presented and discussed as a potential use for SERS readings as complementary information to electrochemical data.
Collapse
|
20
|
Gil Rosa B, Akingbade OE, Guo X, Gonzalez-Macia L, Crone MA, Cameron LP, Freemont P, Choy KL, Güder F, Yeatman E, Sharp DJ, Li B. Multiplexed immunosensors for point-of-care diagnostic applications. Biosens Bioelectron 2022; 203:114050. [DOI: 10.1016/j.bios.2022.114050] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/22/2021] [Accepted: 01/25/2022] [Indexed: 12/14/2022]
|
21
|
Haroon M, Tahir M, Nawaz H, Majeed MI, Al-Saadi AA. Surface-enhanced Raman scattering (SERS) spectroscopy for prostate cancer diagnosis: A review. Photodiagnosis Photodyn Ther 2021; 37:102690. [PMID: 34921990 DOI: 10.1016/j.pdpdt.2021.102690] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/28/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022]
Abstract
The present review focuses on the diagnosis of prostate cancer using surface enhanced Raman scattering (SERS) spectroscopy. On the basis of literature search, SERS-based analysis for prostate cancer detection of different sample types is reported in the present study. Prostate cancer is responsible for nearly one-tenth of all cell cancer deaths among men. Significant efforts have been dedicated to establish precise and sensitive monitoring techniques to detect prostate cancer biomarkers in different types of body samples. Among the various spectro-analytical techniques investigated to achieve this objective, SERS spectroscopy has been proven as a promising approach that provides noticeable enhancements of the Raman sensitivity when the target biomolecules interact with a nanostructured surface. The purpose of this review is to give a brief overview of the SERS-basedapproach and other spectro-analytical strategies being used for the detection and quantification of prostate cancer biomarkers. The revolutionary development of SERS methods for the diagnosis of prostate cancer has been discussed in more details based on the reported literature. It has been noticed that the SERS-based immunoassay presents reliable results for the prostate cancer quantification. The EC-SERS, which integrates electrochemistry with the SERS model, could also offer a potential ultrasensitive strategy, although its application in prostate cancer analysis has been still limited.
Collapse
Affiliation(s)
- Muhammad Haroon
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Muhammad Tahir
- Department of Chemistry, University of Agriculture Faisalabad, Pakistan
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad, Pakistan
| | | | - Abdulaziz A Al-Saadi
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center (IRC) in Refinery and Advanced Chemicals, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
22
|
Serebrennikova KV, Berlina AN, Sotnikov DV, Zherdev AV, Dzantiev BB. Raman Scattering-Based Biosensing: New Prospects and Opportunities. BIOSENSORS 2021; 11:512. [PMID: 34940269 PMCID: PMC8699498 DOI: 10.3390/bios11120512] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 05/02/2023]
Abstract
The growing interest in the development of new platforms for the application of Raman spectroscopy techniques in biosensor technologies is driven by the potential of these techniques in identifying chemical compounds, as well as structural and functional features of biomolecules. The effect of Raman scattering is a result of inelastic light scattering processes, which lead to the emission of scattered light with a different frequency associated with molecular vibrations of the identified molecule. Spontaneous Raman scattering is usually weak, resulting in complexities with the separation of weak inelastically scattered light and intense Rayleigh scattering. These limitations have led to the development of various techniques for enhancing Raman scattering, including resonance Raman spectroscopy (RRS) and nonlinear Raman spectroscopy (coherent anti-Stokes Raman spectroscopy and stimulated Raman spectroscopy). Furthermore, the discovery of the phenomenon of enhanced Raman scattering near metallic nanostructures gave impetus to the development of the surface-enhanced Raman spectroscopy (SERS) as well as its combination with resonance Raman spectroscopy and nonlinear Raman spectroscopic techniques. The combination of nonlinear and resonant optical effects with metal substrates or nanoparticles can be used to increase speed, spatial resolution, and signal amplification in Raman spectroscopy, making these techniques promising for the analysis and characterization of biological samples. This review provides the main provisions of the listed Raman techniques and the advantages and limitations present when applied to life sciences research. The recent advances in SERS and SERS-combined techniques are summarized, such as SERRS, SE-CARS, and SE-SRS for bioimaging and the biosensing of molecules, which form the basis for potential future applications of these techniques in biosensor technology. In addition, an overview is given of the main tools for success in the development of biosensors based on Raman spectroscopy techniques, which can be achieved by choosing one or a combination of the following approaches: (i) fabrication of a reproducible SERS substrate, (ii) synthesis of the SERS nanotag, and (iii) implementation of new platforms for on-site testing.
Collapse
Affiliation(s)
| | | | | | | | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (K.V.S.); (A.N.B.); (D.V.S.); (A.V.Z.)
| |
Collapse
|
23
|
Yu H, Yu J, Li L, Zhang Y, Xin S, Ni X, Sun Y, Song K. Recent Progress of the Practical Applications of the Platinum Nanoparticle-Based Electrochemistry Biosensors. Front Chem 2021; 9:677876. [PMID: 34012952 PMCID: PMC8128108 DOI: 10.3389/fchem.2021.677876] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/07/2021] [Indexed: 11/28/2022] Open
Abstract
The detection of biomolecules using various biosensors with excellent sensitivity, selectivity, stability, and reproducibility, is of great significance in the analytical and biomedical fields toward achieving their practical applications. Noble metal nanoparticles are favorable candidates due to their unique optical, surface electrical effect, and catalytic properties. Among these noble metal nanoparticles, platinum nanoparticles (Pt NPs) have been widely employed for the detection of bioactive substances such as glucose, glutamic acid, and hormones. However, there is still a long way to go before the potential challenges in the practical applications of biomolecules are fully overcome. Bearing this in mind, combined with our research experience, we summarized the recent progress of the Pt NP-based biosensors and highlighted the current problems that exist in their practical applications. The current review would provide fundamental guidance for future applications using the Pt NP-based biosensors in food, agricultural, and medical fields.
Collapse
Affiliation(s)
- Han Yu
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Jingbo Yu
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Linlin Li
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Yujia Zhang
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Shuquan Xin
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Xiuzhen Ni
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, China
| | - Kai Song
- School of Life Sciences, Changchun Normal University, Changchun, China
| |
Collapse
|