1
|
Rasaily S, Baruah K, Sharma D, Lepcha P, Biswas S, Biswas AN, Tamang S, Pariyar A. Rationally Designed Manganese-Based Metal-Organic Frameworks as Altruistic Metal Oxide Precursors for Noble Metal-Free Oxygen Reduction Reaction. Inorg Chem 2023; 62:3026-3035. [PMID: 36755399 DOI: 10.1021/acs.inorgchem.2c03707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The sluggish oxygen reduction reaction (ORR) at the cathode is challenging and hinders the growth of hydrogen fuel cells. Concerning kinetic values, platinum is the best known catalyst for ORR; however, its less abundance, high cost, and corrosive nature warrant the development of low-cost catalysts. We report the hydrothermal synthesis of two novel Mn-based metal-organic frameworks (MOFs), [Mn2(DOT)(H2O)2]n (Mn-SKU-1) and [Mn2(DOT)2(BPY)2(THF)]n (Mn-SKU-2) (DOT = 2,5-dihydroxyterephthalate; BPY = 4,4'-bipyridine). Mn-SKU-1 contains dimeric Mn(II) centers where the two corner-shared MnO6 octahedra fuse to give rise to an infinite Mn2O10 cluster, whereas the two Mn(II) ions coordinate to DOT and BPY moieties to give rise to a pillared structure in Mn-SKU-2 and form a 3D → 3D homo-interpenetration MOF with a twofold interpenetrated net. The pyrolysis of as-synthesized Mn-MOFs at 600 °C under N2 produced exclusively porous α-Mn2O3 composites (PSKU-1 and PSKU-2), with the BET surface area of 90.8 (for PSKU-1) and 179.3 m2 g-1 (for PSKU-2). These mesoporous MOF-derived α-Mn2O3 composites were modified as cathode materials for the electrocatalytic reduction of oxygen. The onset potential for the oxygen reduction reaction was found to be 0.90 V for PSKU-1 and 0.93 V for PSKU-2 versus RHE in 0.1 M KOH solution, with the current density of 4.8 and 6.0 mA cm-2, respectively, at 1600 rpm. Based on the RDE/RRDE results, the electrocatalytic oxygen reduction occurs majorly via the four-electron process. The electrocatalyst PSKU-2 is cheap, easy to use, retains 90% of its activity after 10 h of continuous use, and offers higher recyclability than Pt/C. The onset potential maximum current density and kinetic values (Jk = 11.68 mA cm-2 and Tafel slope = 85.0 mV dec-1) obtained in this work are higher than the values reported for pure Mn2O3.
Collapse
Affiliation(s)
- Sagarmani Rasaily
- Department of Chemistry, School of Physical Sciences, Sikkim University, Gangtok, East Sikkim 737102, India
| | - Khanindram Baruah
- Department of Chemistry, School of Physical Sciences, Sikkim University, Gangtok, East Sikkim 737102, India
| | - Debesh Sharma
- Department of Chemistry, School of Physical Sciences, Sikkim University, Gangtok, East Sikkim 737102, India
| | - Panjo Lepcha
- Department of Chemistry, National Institute of Technology, Ravangla, South Sikkim 737139, India
| | - Sachidulal Biswas
- Department of Chemistry, National Institute of Technology, Ravangla, South Sikkim 737139, India
| | | | - Sudarsan Tamang
- Department of Chemistry, School of Physical Sciences, Sikkim University, Gangtok, East Sikkim 737102, India
| | - Anand Pariyar
- Department of Chemistry, School of Physical Sciences, Sikkim University, Gangtok, East Sikkim 737102, India
| |
Collapse
|
2
|
Dosaev KA, Istomin SY, Antipov EV. Synthesis and Crystal Structure of New Oxochloride (Mn,Mg)8Cl3O10. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622070063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Dosaev K, Istomin S, Strebkov D, Tsirlina G, Antipov E, Savinova E. AMn2O4 Spinels (A - Li, Mg, Mn, Cd) as ORR catalysts: the role of Mn coordination and oxidation state in the catalytic activity and their propensity to degradation. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Koventhan C, Vinothkumar V, Chen SM. Rational design of manganese oxide/tin oxide hybrid nanocomposite based electrochemical sensor for detection of prochlorperazine (Antipsychotic drug). Microchem J 2022. [DOI: 10.1016/j.microc.2021.107082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Zhao Y, Yang H, Sun J, Zhang Y, Xia S. Activation of Peroxymonosulfate Using Secondary Pyrolysis Oil-Based Drilling Cuttings Ash for Pollutant Removal. ACS OMEGA 2021; 6:16446-16454. [PMID: 34235316 PMCID: PMC8246478 DOI: 10.1021/acsomega.1c01597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
In this study, the utilization of secondary pyrolysis oil-based drilling cuttings ash (OBDCA-sp) to activate peroxymonosulfate (PMS) for pollutant removal was investigated. The chemical and physical properties of OBDCA-sp were explicitly analyzed via multiple characterization. The activation efficiency of OBDCA-sp for PMS was tested using humic acid (HA) as the target pollutant. 92% of HA and 52% of total organic carbon in solution could be removed using OBDCA-sp-activated PMS under optimal conditions: OBDCA-sp dosage at 4 g/L, PMS concentration at 4 mmol/L, HA concentration at 10 mg/L, and pH value at 7. After four cycles, 84% removal rate of HA could still be achieved using OBDCA-sp to activate PMS. The main catalysis elements for PMS activation in OBDCA were postulated to be Fe(III), Co(III), and Mn(III), based on X-ray photoelectron spectroscopy and X-ray diffraction results. The results of the quenching experiment indicated that SO4 •-, •OH, and 1O2 were the main reactive oxygen species (ROS) and that 1O2 was the dominant ROS in the HA removal process. Radical trapping experiments indicated the presence of SO4 •-, •OH, and 1O2 in the reaction system. This study presented a novel utilization path of OBDCA in the field of environmental remediation.
Collapse
Affiliation(s)
- Yuqing Zhao
- School
of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
- College
of Ecology and Environment, Hubei Vocational
College of Ecological Engineering, Wuhan 430200, P. R. China
- State
Key Laboratory of Freshwater Ecology and Biotechnology, Institute
of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Hang Yang
- School
of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jianfa Sun
- China
Petroleum & Chemical Corporation Jianghan Oilfield, Branch No. 1 Gas Production Plant, Chongqing 400000, China
| | - Yi Zhang
- State
Key Laboratory of Freshwater Ecology and Biotechnology, Institute
of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Shibin Xia
- School
of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|