1
|
Yang Y, Liu J, Li W, Zheng Y, Xu W. Colorimetric/fluorescent dual-mode assay for antioxidant capacity of gallnuts based on CuCo nanozyme and AIE luminogen. Talanta 2024; 277:126345. [PMID: 38878507 DOI: 10.1016/j.talanta.2024.126345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/30/2024] [Accepted: 05/31/2024] [Indexed: 07/19/2024]
Abstract
In this work, we present a dual-mode assay system consisting of a nanozyme and a luminogen with the aggregation-induced emission (AIE) feature. In the assay system, the chosen nanozyme named CuCo-0 catalyzes the substrate to produce colorimetric signals, while the aggregates of H4ETTC (4,4',4″,4‴-(ethene-1,1,2,2-tetrayl) tetrakis ([1,1'-biphenyl]-4-carboxylic acid), a typical AIE luminogen, generate fluorescent signals. The peroxidase-like activity of the CuCo-0 nanozyme can be remarkably suppressed with sequential additions of antioxidants, leading to a dual-signal response characterized by enhanced fluorescence emission and reduced UV-vis absorbance. On this basis, a dual-mode assay capable of producing both colorimetric and fluorescent signals for the assessment of antioxidant capacity using gallic acid as a representative antioxidant was exploited. Good linearity can be obtained in the 0-60 μM range for both colorimetric analysis and fluorescent analysis, with detection limits of 1.3 μM and 0.35 μM, respectively. Furthermore, this dual-mode assay was successfully applied to real gallnut samples, yielding satisfactory results.
Collapse
Affiliation(s)
- Yiming Yang
- School of Materials Chemistry and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, PR China
| | - Junlei Liu
- School of Materials Chemistry and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, PR China
| | - Wenying Li
- School of Materials Chemistry and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, PR China.
| | - Yueqing Zheng
- School of Materials Chemistry and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, PR China.
| | - Wei Xu
- School of Materials Chemistry and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, PR China
| |
Collapse
|
2
|
Ju H, Yang J, Guo X, Lang H, Wang S, Pu C, Zhao L, Yang L, Han W. Prussian blue analogue-derived Co 3O 4/Fe 2O 3 with a partially hollow and octahedral structure for high-performance supercapacitors. Dalton Trans 2024; 53:2626-2634. [PMID: 38224010 DOI: 10.1039/d3dt04021f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
A supercapacitor (SC) is considered as a promising energy storage device because of its high power density, fast charging/discharging speed and long cycle life. The transition metal oxides prepared by traditional methods face some challenges, such as low conductivity and uncontrollable pore size distribution. Therefore, we have prepared Prussian blue analogues (PBAs) using a coprecipitation method. By adjusting additives in the experimental process, uniform PBAs with a series of regular morphologies and structures are successfully prepared. Then the corresponding metal oxides are obtained by calcining precursors. We systematically study the influence of the morphology and structure of metal oxides Co3O4/Fe2O3 derived from PBAs on their electrochemical performance. The metal oxide with a partially hollow and octahedral structure shows excellent electrochemical performance. In a neutral electrolyte, the specific capacitance is 659.7 F g-1 at a current density of 0.5 A g-1. After 6000 cycles, the capacitance retention rate is 63.7%. An asymmetric supercapacitor (ASC) is constructed using Co3O4/Fe2O3 with an octahedral structure (CFMO-PVP-2) as the positive electrode and YP-50F as the negative electrode. The maximum energy density is 31.4 W h kg-1 at a power density of 1921 W kg-1. The maximum power density is 8421 W kg-1 at an energy density of 23.5 W h kg-1. The excellent electrochemical performance is attributed to the low resistance (Rw and Rct) and high DOH- derived from the oxide particles on the surface and within the inner parts of the octahedron, which are available for electron transport. Meanwhile, the open void between adjacent nanoparticles allows the electrolyte ions to diffuse more efficiently and ensures a much more effective area for participating in a reaction. The strategy will give new insights into designing high-performance SCs based on PBAs.
Collapse
Affiliation(s)
- Hui Ju
- College of Chemistry and Chemical Engineering, Mianyang Teachers' College, Mianyang, 621900, China.
| | - Jixiang Yang
- College of Chemistry and Chemical Engineering, Mianyang Teachers' College, Mianyang, 621900, China.
| | - Xiaoyang Guo
- College of Chemistry and Chemical Engineering, Mianyang Teachers' College, Mianyang, 621900, China.
| | - Hongli Lang
- College of Chemistry and Chemical Engineering, Mianyang Teachers' College, Mianyang, 621900, China.
| | - Sheng Wang
- College of Chemistry and Chemical Engineering, Mianyang Teachers' College, Mianyang, 621900, China.
| | - Chenjin Pu
- College of Chemistry and Chemical Engineering, Mianyang Teachers' College, Mianyang, 621900, China.
| | - Ling Zhao
- College of Chemistry and Chemical Engineering, Mianyang Teachers' College, Mianyang, 621900, China.
| | - Lirong Yang
- College of Chemistry and Chemical Engineering, Mianyang Teachers' College, Mianyang, 621900, China.
| | - Wenjing Han
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| |
Collapse
|
3
|
Ju H, Tang Q, Xu Y, Bai X, Pu C, Liu T, Liu S, Zhang L. Prussian blue analogue-derived hollow metal oxide heterostructure for high-performance supercapacitors. Dalton Trans 2023; 52:12948-12957. [PMID: 37646327 DOI: 10.1039/d3dt01966g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Supercapacitors (SCs) have been the subject of considerable interest because of their distinct advantages. The performance of SCs is directly affected by the electrode materials. Metal oxides derived from Prussian blue analogues (PBAs) are often used as electrode materials for SCs. Herein, we developed a multi-step strategy to fabricate ternary hollow metal oxide (CuO/NiO/Co3O4) heterostructures. The core-shell structured PBA (NiHCC@CuHCC) with Ni-based PBA (NiHCC) as the core and Cu-based PBA (CuHCC) as the shell was prepared by a crystal seed method. The ternary metal oxide (CuO/NiO/Co3O4) with a hollow structure was obtained by calcinating NiHCC@CuHCC. The prepared CuO/NiO/Co3O4 demonstrates an excellent specific capacitance of 262.5 F g-1 at 1 A g-1, which is 27.4% and 16.2% higher than those of CuO/Co3O4 and NiO/Co3O4, respectively. In addition, the material showed outstanding cycling stability with a capacitance retention of 107.9% after 3000 cycles. The two-electrode system constructed with CuO/NiO/Co3O4 and nitrogen-doped graphene hydrogel (NDGH) demonstrates a stable and high energy density of 27.1 W h kg-1 at a power density of 1037.5 W kg-1. The capacitance retention rate was 100.7% after 4000 cycles. The reason for the excellent electrochemical properties could be the synergistic effect of the introduced heterojunction of CuO/NiO, the hollow structure, and various metal oxides. This strategy can greatly inspire the construction of SC electrodes.
Collapse
Affiliation(s)
- Hui Ju
- College of Chemistry and Chemical Engineering, Mianyang Teachers' College, Mianyang, 621900, China.
- Research Centre of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Qianqian Tang
- College of Chemistry and Chemical Engineering, Mianyang Teachers' College, Mianyang, 621900, China.
| | - Yong Xu
- College of Chemistry and Chemical Engineering, Mianyang Teachers' College, Mianyang, 621900, China.
| | - Xiaojing Bai
- College of Chemistry and Chemical Engineering, Mianyang Teachers' College, Mianyang, 621900, China.
| | - Chenjin Pu
- College of Chemistry and Chemical Engineering, Mianyang Teachers' College, Mianyang, 621900, China.
| | - Tongchen Liu
- College of Chemistry and Chemical Engineering, Mianyang Teachers' College, Mianyang, 621900, China.
| | - Shuxin Liu
- College of Chemistry and Chemical Engineering, Mianyang Teachers' College, Mianyang, 621900, China.
| | - Lin Zhang
- Research Centre of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900, China
| |
Collapse
|
4
|
Ren X, Wang H, Chen J, Xu W, He Q, Wang H, Zhan F, Chen S, Chen L. Emerging 2D Copper-Based Materials for Energy Storage and Conversion: A Review and Perspective. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204121. [PMID: 36526607 DOI: 10.1002/smll.202204121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/23/2022] [Indexed: 06/17/2023]
Abstract
2D materials have shown great potential as electrode materials that determine the performance of a range of electrochemical energy technologies. Among these, 2D copper-based materials, such as Cu-O, Cu-S, Cu-Se, Cu-N, and Cu-P, have attracted tremendous research interest, because of the combination of remarkable properties, such as low cost, excellent chemical stability, facile fabrication, and significant electrochemical properties. Herein, the recent advances in the emerging 2D copper-based materials are summarized. A brief summary of the crystal structures and synthetic methods is started, and innovative strategies for improving electrochemical performances of 2D copper-based materials are described in detail through defect engineering, heterostructure construction, and surface functionalization. Furthermore, their state-of-the-art applications in electrochemical energy storage including supercapacitors (SCs), alkali (Li, Na, and K)-ion batteries, multivalent metal (Mg and Al)-ion batteries, and hybrid Mg/Li-ion batteries are described. In addition, the electrocatalysis applications of 2D copper-based materials in metal-air batteries, water-splitting, and CO2 reduction reaction (CO2 RR) are also discussed. This review also discusses the charge storage mechanisms of 2D copper-based materials by various advanced characterization techniques. The review with a perspective of the current challenges and research outlook of such 2D copper-based materials for high-performance energy storage and conversion applications is concluded.
Collapse
Affiliation(s)
- Xuehua Ren
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Haoyu Wang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Jun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Weili Xu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Qingqing He
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Huayu Wang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Feiyang Zhan
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA, 95060, USA
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
5
|
Prussian blue analogue derived NiCoSe4 coupling with nitrogen-doped carbon nanofibers for pseudocapacitive electrodes. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
Reddy NR, Kumar AS, Reddy PM, Kakarla RR, Joo SW, Aminabhavi TM. Novel rhombus Co 3O 4-nanocapsule CuO heterohybrids for efficient photocatalytic water splitting and electrochemical energy storage applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116650. [PMID: 36419312 DOI: 10.1016/j.jenvman.2022.116650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
The most appealing and prominent approach for improving energy storage and conversion performance is the development of heterojunction interfaces with efficient and unique metal oxide nanostructures. Rhombus Co3O4, nanocapsule CuO, and their heterojunction composites were synthesized using a single-step hydrothermal process. The resulting heterojunction Co3O4-CuO nanocomposite outperformed the pristine Co3O4 and CuO nanostructures for the electrochemical supercapacitor and water splitting performances. The composite showed 2.4 and 1.3 times higher specific capacitance than the associated pristine CuO and Co3O4 nanostructures, while its capacitance was 395 F g-1 at a current density of 0.5 A g-1. In addition, long-term GCD results with more than 90% stability and significant capacity retention at higher scan rates revealed the unaffected structures interfaced during the electrochemical reactions. The composite photoelectrode demonstrated more than 20% of photocurrent response with light illumination than the dark condition in water splitting. Co3O4-CuO heterostructured composite electrode showed a 0.16 mA/cm2 photocurrent density, which is 3.2 and 1.7 times higher than the pristine CuO and Co3O4 electrodes, respectively. This performance was attributed to its unique structural composition, high reactive sites, strong ion diffusion, and fast electron accessibility. Electron microscopic and spectroscopic techniques confirmed the properties of the electrodes as well as their morphological properties. Overall, the heterojunction interface with novel rhombus and capsule structured architectures showed good electrochemical performance, suggesting their energy storage and conversion applications.
Collapse
Affiliation(s)
- N Ramesh Reddy
- School of Chemical Engineering, Yeungnam University, Gyeongsan - 38541, Republic of Korea
| | - A Sai Kumar
- Department of Physics, Yeungnam University, Gyeongsan - 38541, Republic of Korea
| | - P Mohan Reddy
- School of Chemical Engineering, Yeungnam University, Gyeongsan - 38541, Republic of Korea
| | - Raghava Reddy Kakarla
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan - 38541, Republic of Korea.
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi 580 031, Karnataka, India; University Center for Research & Development (UCRO), Chandigarh University, Gharuan, Mohali - 140413, Punjab, India.
| |
Collapse
|
7
|
Ghafoor Abid A, Al Huwayz M, Alwadai N, Manzoor S, Munawar T, Iqbal F, Hua R, Aman S, Al-Buriahi MS, Naeem Ashiq M. 3D nanosheet networks like mesoporous structure of NiO/CoSe 2nanohybrid directly grown on nickel foam for oxygen evolution process. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2148841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Abdul Ghafoor Abid
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Maryam Al Huwayz
- Department of Physics, College of science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Norah Alwadai
- Department of Physics, College of science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Sumaira Manzoor
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Tauseef Munawar
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Faisal Iqbal
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ruimao Hua
- Department of Chemistry, Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, People’s Republic of China
| | - Salma Aman
- Institute of Physics, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan-, Pakistan
| | | | | |
Collapse
|
8
|
Wei S, Li H, Li K, Zhang R, Wang G, Liu R. Design of Prussian Blue Analogue-Derived Magnetic Binary Ce–Fe Oxide Catalysts for the Selective Oxidation of Cyclohexane. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Shuang Wei
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang110142, P. R. China
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, CAS, Beijing100190, P. R. China
| | - Hao Li
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, CAS, Beijing100190, P. R. China
| | - Kexin Li
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, CAS, Beijing100190, P. R. China
| | - Ruirui Zhang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang110142, P. R. China
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, CAS, Beijing100190, P. R. China
| | - Guosheng Wang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang110142, P. R. China
| | - Ruixia Liu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, CAS, Beijing100190, P. R. China
| |
Collapse
|
9
|
Zhang Y, Liu L, Deng Q, Wu W, Li Y, Ren X, Zhang P, Sun L. Hybrid CuO-Co3O4 nanosphere/RGO sandwiched composites as anode materials for lithium-ion batteries. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Pseudocapacitive Mn-Co mixed oxides obtained by thermal decomposition of manganese hexacyanocobaltate in presence of carbon structures. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Zhou H, Ren M, Zhai HJ. Enhanced supercapacitive behaviors of poly(3,4-ethylenedioxythiophene)/ graphene oxide hybrids prepared under optimized electropolymerization conditions. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137861] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|