1
|
Azmi R, Lindgren F, Stokes-Rodriguez K, Buga M, Ungureanu C, Gouveia T, Christensen I, Pal S, Vlad A, Ladam A, Edström K, Hahlin M. An XPS Study of Electrolytes for Li-Ion Batteries in Full Cell LNMO vs Si/Graphite. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34266-34280. [PMID: 38904375 PMCID: PMC11231978 DOI: 10.1021/acsami.4c01891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Two different types of electrolytes (co-solvent and multi-salt) are tested for use in high voltage LiNi0.5Mn1.5O4||Si/graphite full cells and compared against a carbonate-based standard LiPF6 containing electrolyte (baseline). Ex situ postmortem XPS analysis on both anodes and cathodes over the life span of the cells reveals a continuously growing SEI and CEI for the baseline electrolyte. The cells cycled in the co-solvent electrolyte exhibited a relatively thick and long-term stable CEI (on LNMO), while a slowly growing SEI was determined to form on the Si/graphite. The multi-salt electrolyte offers more inorganic-rich SEI/CEI while also forming the thinnest SEI/CEI observed in this study. Cross-talk is identified in the baseline electrolyte cell, where Si is detected on the cathode, and Mn is detected on the anode. Both the multi-salt and co-solvent electrolytes are observed to substantially reduce this cross-talk, where the co-solvent is found to be the most effective. In addition, Al corrosion is detected for the multi-salt electrolyte mainly at its end-of-life stage, where Al can be found on both the anode and cathode. Although the co-solvent electrolyte offers superior interface properties in terms of the limitation of cross-talk, the multi-salt electrolyte offers the best overall performance, suggesting that interface thickness plays a superior role compared to cross-talk. Together with their electrochemical cycling performance, the results suggest that multi-salt electrolyte provides a better long-term passivation of the electrodes for high-voltage cells.
Collapse
Affiliation(s)
- Raheleh Azmi
- Department
of Chemistry − Ångström Laboratory, Structural
Chemistry, Uppsala University, Box 538, Uppsala 751 21, Sweden
| | - Fredrik Lindgren
- Department
of Chemistry − Ångström Laboratory, Structural
Chemistry, Uppsala University, Box 538, Uppsala 751 21, Sweden
| | - Killian Stokes-Rodriguez
- Department
of Chemistry − Ångström Laboratory, Structural
Chemistry, Uppsala University, Box 538, Uppsala 751 21, Sweden
- Department
of Sustainable Energy Technology, SINTEF
Industry, Trondheim 7491, Norway
| | - Mihaela Buga
- ROM-EST
Laboratory, ICSI Energy Department, National
Research and Development Institute for Cryogenic and Isotopic Technologies
− ICSI, 4 Uzinei, Ramnicu Valcea 240050, Romania
| | - Cosmin Ungureanu
- ROM-EST
Laboratory, ICSI Energy Department, National
Research and Development Institute for Cryogenic and Isotopic Technologies
− ICSI, 4 Uzinei, Ramnicu Valcea 240050, Romania
- Faculty
of Energy Engineering, National University
of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, Bucharest 060042, Romania
| | - Tom Gouveia
- Research
and Innovation Department, Solvionic, Toulouse 31100, France
| | | | - Shubhadeep Pal
- Institute
of Condensed Matter and Nanosciences, Université
Catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
| | - Alexandru Vlad
- Institute
of Condensed Matter and Nanosciences, Université
Catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
| | - Alix Ladam
- Research
and Innovation Department, Solvionic, Toulouse 31100, France
| | - Kristina Edström
- Department
of Chemistry − Ångström Laboratory, Structural
Chemistry, Uppsala University, Box 538, Uppsala 751 21, Sweden
| | - Maria Hahlin
- Department
of Chemistry − Ångström Laboratory, Structural
Chemistry, Uppsala University, Box 538, Uppsala 751 21, Sweden
- Department
of Physics and Astronomy, Division of X-ray Photon Science, Uppsala University, Box
516, S-751 20 Uppsala, Sweden
| |
Collapse
|
2
|
Su C, Shodievich KM, Zhao Y, Ji P, Zhang X, Wang H, Zhang C, Wang G. Construction of sub micro-nano-structured silicon based anode for lithium-ion batteries. NANOTECHNOLOGY 2024; 35:335404. [PMID: 38759633 DOI: 10.1088/1361-6528/ad4cf2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/17/2024] [Indexed: 05/19/2024]
Abstract
The significant volume change experienced by silicon (Si) anodes during lithiation/delithiation cycles often triggers mechanical-electrochemical failures, undermining their utility in high-energy-density lithium-ion batteries (LIBs). Herein, we propose a sub micro-nano-structured Si based material to address the persistent challenge of mechanic-electrochemical coupling issue during cycling. The mesoporous Si-based composite submicrospheres (M-Si/SiO2/CS) with a high Si/SiO2content of 84.6 wt.% is prepared by magnesiothermic reduction of mesoporous SiO2submicrospheres followed by carbon coating process. M-Si/SiO2/CS anode can maintain a high specific capacity of 740 mAh g-1at 0.5 A g-1after 100 cycles with a lower electrode thickness swelling rate of 63%, and exhibits a good long-term cycling stability of 570 mAh g-1at 1 A g-1after 250 cycles. This remarkable Li-storage performance can be attributed to the synergistic effects of the hierarchical structure and SiO2frameworks. The spherical structure mitigates stress/strain caused by the lithiation/delithiation, while the internal mesopores provide buffer space for Si expansion and obviously shorten the diffusion path for electrolyte/ions. Additionally, the amorphous SiO2matrix not only servers as support for structure stability, but also facilitates the rapid formation of a stable solid electrolyte interphase layer. This unique architecture offers a potential model for designing high-performance Si-based anode for LIBs.
Collapse
Affiliation(s)
- Chen Su
- School of Materials Science & Engineering and Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Kurbanov Mirtemir Shodievich
- Arifov Institute of Ion-Plasma and Laser Technologies, Academy of Sciences of the Republic of Uzbekistan, Tashkent 100077, Uzbekistan
| | - Yi Zhao
- Offshore oil Engineering Co., Ltd, Tianjin 300451, People's Republic of China
| | - Puguang Ji
- School of Materials Science & Engineering and Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Xin Zhang
- School of Materials Science & Engineering and Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Hua Wang
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, People's Republic of China
| | - Chengwei Zhang
- School of Materials Science & Engineering and Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Gongkai Wang
- School of Materials Science & Engineering and Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| |
Collapse
|
3
|
Yang Y, Zhang R, Zhang Q, Feng L, Wen G, Qin LC, Wang D. Using Sandwiched Silicon/Reduced Graphene Oxide Composites with Dual Hybridization for Their Stable Lithium Storage Properties. Molecules 2024; 29:2178. [PMID: 38792041 PMCID: PMC11124151 DOI: 10.3390/molecules29102178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
Using silicon/reduced graphene oxide (Si/rGO) composites as lithium-ion battery (LIB) anodes can effectively buffer the volumetric expansion and shrinkage of Si. Herein, we designed and prepared Si/rGO-b with a sandwiched structure, formed by a duple combination of ammonia-modified silicon (m-Si) nanoparticles (NP) with graphene oxide (GO). In the first composite process of m-Si and GO, a core-shell structure of primal Si/rGO-b (p-Si/rGO-b) was formed. The amino groups on the m-Si surface can not only hybridize with the GO surface to fix the Si particles, but also form covalent chemical bonds with the remaining carboxyl groups of rGO to enhance the stability of the composite. During the electrochemical reaction, the oxygen on the m-Si surface reacts with lithium ions (Li+) to form Li2O, which is a component of the solid-electrolyte interphase (SEI) and is beneficial to buffering the volume expansion of Si. Then, the p-Si/rGO-b recombines with GO again to finally form a sandwiched structure of Si/rGO-b. Covalent chemical bonds are formed between the rGO layers to tightly fix the p-Si/rGO-b, and the conductive network formed by the reintroduced rGO improves the conductivity of the Si/rGO-b composite. When used as an electrode, the Si/rGO-b composite exhibits excellent cycling performance (operated stably for more than 800 cycles at a high-capacity retention rate of 82.4%) and a superior rate capability (300 mA h/g at 5 A/g). After cycling, tiny cracks formed in some areas of the electrode surface, with an expansion rate of only 27.4%. The duple combination of rGO and the unique sandwiched structure presented here demonstrate great effectiveness in improving the electrochemical performance of alloy-type anodes.
Collapse
Affiliation(s)
- Yuying Yang
- Analytical and Testing Center, Shandong University of Technology, Zibo 255000, China; (Y.Y.); (Q.Z.); (L.F.)
| | - Rui Zhang
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China;
| | - Qiang Zhang
- Analytical and Testing Center, Shandong University of Technology, Zibo 255000, China; (Y.Y.); (Q.Z.); (L.F.)
| | - Liu Feng
- Analytical and Testing Center, Shandong University of Technology, Zibo 255000, China; (Y.Y.); (Q.Z.); (L.F.)
| | - Guangwu Wen
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China;
| | - Lu-Chang Qin
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255, USA
| | - Dong Wang
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China;
- Shangdong Si-Nano Materials Technology Co., Ltd., Zibo 255000, China
| |
Collapse
|
4
|
Xia X, Yang J, Liu Y, Zhang J, Shang J, Liu B, Li S, Li W. Material Choice and Structure Design of Flexible Battery Electrode. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204875. [PMID: 36403240 PMCID: PMC9875691 DOI: 10.1002/advs.202204875] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/10/2022] [Indexed: 06/16/2023]
Abstract
With the development of flexible electronics, the demand for flexibility is gradually put forward for its energy supply device, i.e., battery, to fit complex curved surfaces with good fatigue resistance and safety. As an important component of flexible batteries, flexible electrodes play a key role in the energy density, power density, and mechanical flexibility of batteries. Their large-scale commercial applications depend on the fulfillment of the commercial requirements and the fabrication methods of electrode materials. In this paper, the deformable electrode materials and structural design for flexible batteries are summarized, with the purpose of flexibility. The advantages and disadvantages of the application of various flexible materials (carbon nanotubes, graphene, MXene, carbon fiber/carbon fiber cloth, and conducting polymers) and flexible structures (buckling structure, helical structure, and kirigami structure) in flexible battery electrodes are discussed. In addition, the application scenarios of flexible batteries and the main challenges and future development of flexible electrode fabrication are also discussed, providing general guidance for the research of high-performance flexible electrodes.
Collapse
Affiliation(s)
- Xiangling Xia
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200072, China
| | - Jack Yang
- Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yang Liu
- College of Sciences, Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
- Shaoxing Institute of Technology, Shanghai University, Shaoxing, 312000, China
| | - Jiujun Zhang
- College of Sciences, Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
- School of Materials Science and Engineering, Fuzhou University, Fujian, 350108, China
| | - Jie Shang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Bin Liu
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200072, China
| | - Sean Li
- Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Wenxian Li
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200072, China
- Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
- College of Sciences, Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
5
|
Sun L, Liu Y, Wu J, Shao R, Jiang R, Tie Z, Jin Z. A Review on Recent Advances for Boosting Initial Coulombic Efficiency of Silicon Anodic Lithium Ion batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2102894. [PMID: 34611990 DOI: 10.1002/smll.202102894] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Rechargeable silicon anode lithium ion batteries (SLIBs) have attracted tremendous attention because of their merits, including a high theoretical capacity, low working potential, and abundant natural sources. The past decade has witnessed significant developments in terms of extending the lifespan and maintaining high capacities of SLIBs. However, the detrimental issue of low initial Coulombic efficiency (ICE) toward SLIBs is causing more and more attention in recent years because ICE value is a core index in full battery design that profoundly determines the utilization of active materials and the weight of an assembled battery. Herein, a comprehensive review is presented of recent advances in solutions for improving ICE of SLIBs. From design perspectives, the strategies for boosting ICE of silicon anodes are systematically categorized into several aspects covering structure regulation, prelithiation, interfacial design, binder design, and electrolyte additives. The merits and challenges of various approaches are highlighted and discussed in detail, which provides valuable insights into the rational design and development of state-of-the-art techniques to deal with the deteriorative issue of low ICE of SLIBs. Furthermore, conclusions and future promising research prospects for lifting ICE of SLIBs are proposed at the end of the review.
Collapse
Affiliation(s)
- Lin Sun
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yanxiu Liu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Jun Wu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Rong Shao
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Ruiyu Jiang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Zuoxiu Tie
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen, 518063, China
| | - Zhong Jin
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen, 518063, China
| |
Collapse
|
6
|
Nulu A, Nulu V, Sohn KY. Effect of Cobalt Doping on Enhanced Lithium Storage Performance of Nanosilicon. ChemElectroChem 2021. [DOI: 10.1002/celc.202001533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Arunakumari Nulu
- Department of Nanoscience and Engineering Center for Nano Manufacturing Inje University 197 Inje ro Gimhae, Gyeongnam-do 50834 Korea
| | - Venugopal Nulu
- Department of Nanoscience and Engineering Center for Nano Manufacturing Inje University 197 Inje ro Gimhae, Gyeongnam-do 50834 Korea
| | - Keun Yong Sohn
- Department of Nanoscience and Engineering Center for Nano Manufacturing Inje University 197 Inje ro Gimhae, Gyeongnam-do 50834 Korea
| |
Collapse
|