1
|
Karmur RS, Gogoi D, Das MR, Ghosh NN. A flexible solid-state asymmetric supercapacitor device comprising cobalt hydroxide and biomass-derived porous carbon. RSC Adv 2024; 14:27465-27474. [PMID: 39211909 PMCID: PMC11358879 DOI: 10.1039/d4ra05106h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Development in the field of alternative and renewable energy sources is becoming necessary considering the current energy demands of the growing technologies. The main challenge associated with the produced energy is to store it for future use, such that it can be used when needed. Supercapacitors are among the electrochemical energy storage systems that provides higher power density, faster charging-discharging, high specific capacitance (C S), and long cycling life. Herein, the fabrication of a flexible solid-state asymmetric supercapacitor (ASC) device is reported, where Co(OH)2 hollow spheres and biomass-derived porous carbon (PC) are the cathode and anode, respectively. Co(OH)2 is a highly redox active material, whereas PC is an electric double-layer capacitive (EDLC) material. In this device, aqueous KOH solution (electrolyte) encapsulated in PVA gel (separator) was used to bind the electrodes. This Co(OH)2//PC ASC device exhibited a high C S of 260 F g-1 (at 2 A g-1). It retained ∼91% of the initial C S value (at 6 A g-1) till ∼5000 cycles. Electrochemical impedance spectroscopy (EIS) study confirmed low internal resistance (0.95 Ω) and charge transfer resistance (1.41 Ω) values of Co(OH)2//PC. These results indicate that the high electron transfer process in the electrode-electrolyte interface during the electrochemical reaction, which is responsible for the excellent performance of this ASC device. The high-performance Co(OH)2//PC ASC device exhibited an energy density of 76.7 W h kg-1 at a power density of 1416.9 W kg-1. To demonstrate its practical use, LED lights were illuminated using this Co(OH)2//PC ASC device.
Collapse
Affiliation(s)
- Rajeshvari Samatbhai Karmur
- Nano-materials Lab, Department of Chemistry, BITS-Pilani Goa Campus Zuarinagar Goa-403726 India +91 25570339 +91 832 2580318
| | - Debika Gogoi
- Nano-materials Lab, Department of Chemistry, BITS-Pilani Goa Campus Zuarinagar Goa-403726 India +91 25570339 +91 832 2580318
| | - Manash R Das
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-NEIST Jorhat Assam-785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Narendra Nath Ghosh
- Nano-materials Lab, Department of Chemistry, BITS-Pilani Goa Campus Zuarinagar Goa-403726 India +91 25570339 +91 832 2580318
| |
Collapse
|
2
|
Wang D, Sun Z, Han X. Bidirectional activation technology towards foam-like carbon nanosheets and its coupling with oxygen-deficient α‐MnO2 for ammonium-ion hybrid supercapacitors. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
3
|
Xu X, Song Y, Hu C, Shao M, Li C. Cobalt‐Nickel Ultrathin Hexagonal Nanosheets for High‐performance Asymmetric Supercapacitors. ChemElectroChem 2023. [DOI: 10.1002/celc.202300023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
4
|
Ren X, Bao E, Liu X, Xiang Y, Xu C, Chen H. Advanced Hybrid Supercapacitors Assembled With Beta-Co(OH)2 Microflowers and Microclews as High-performance Cathode Materials. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
5
|
Tang W, Li J, Yang P, He Q, Liao L, Zhao M, Yang L, Wang Z, Wang L, He P, Jia B. Azure B microspheres/nitrogen-doped reduced graphene oxide: non-covalent interactions based crosslinking fabrication for high-performance supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Tang W, Bai J, Zhou P, He Q, Xiao F, Zhao M, Yang P, Liao L, Wang Y, He P, Jia B, Bian L. Polymethylene blue nanospheres supported honeycomb-like NiCo-LDH for high-performance supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Hydrothermal synthesis and electrochemical performance of Fe-doped Co hydroxide electrode materials. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05265-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
8
|
Ren X, Sun M, Gan Z, Li Z, Cao B, Shen W, Fu Y. Hierarchically nanostructured Zn 0.76C 0.24S@Co(OH) 2 for high-performance hybrid supercapacitor. J Colloid Interface Sci 2022; 618:88-97. [PMID: 35334365 DOI: 10.1016/j.jcis.2022.03.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022]
Abstract
It is a great challenge to achieve both high specific capacity and high energy density of supercapacitors by designing and constructing hybrid electrode materials through a simple but effective process. In this paper, we proposed a hierarchically nanostructured hybrid material combining Zn0.76Co0.24S (ZCS) nanoparticles and Co(OH)2 (CH) nanosheets using a two-step hydrothermal synthesis strategy. Synergistic effects between ZCS nanoparticles and CH nanosheets result in efficient ion transports during the charge-discharge process, thus achieving a good electrochemical performance of the supercapacitor. The synthesized ZCS@CH hybrid exhibits a high specific capacity of 1152.0 C g-1 at a current density of 0.5 A g-1 in 2 M KOH electrolyte. Its capacity retention rate is maintained at ∼ 70.0% when the current density is changed from 1 A g-1 to 10 A g-1. A hybrid supercapacitor (HSC) assembled from ZCS@CH as the cathode and active carbon (AC) as the anode displays a capacitance of 155.7 F g-1 at 0.5 A g-1, with a remarkable cycling stability of 91.3% after 12,000cycles. Meanwhile, this HSC shows a high energy density of 62.5 Wh kg-1 at a power density of 425.0 W kg-1, proving that the developed ZCS@CH is a promising electrode material for energy storage applications.
Collapse
Affiliation(s)
- Xiaohe Ren
- School of Physics, University of Electronic Science and Technology of China, Chengdu 6111731, PR China
| | - Mengxuan Sun
- School of Physics, University of Electronic Science and Technology of China, Chengdu 6111731, PR China
| | - Ziwei Gan
- School of Physics, University of Electronic Science and Technology of China, Chengdu 6111731, PR China
| | - Zhijie Li
- School of Physics, University of Electronic Science and Technology of China, Chengdu 6111731, PR China.
| | - Baobao Cao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Wenzhong Shen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001, PR China
| | - YongQing Fu
- Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| |
Collapse
|
9
|
Chen Y, Huang J, Ma Y, Xu H. Enhancing the electrochemical performance of biomass activated carbon through confining acid red 18 into the nanopores. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Bao Y, Xu H, Chen P, Zhu Y, Zuo S, Kong X, Chen Y. Redox molecule Alizarin red S anchored on biomass-derived porous carbon for enhanced supercapacitive performance. NEW J CHEM 2022. [DOI: 10.1039/d2nj02394f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biomass-derived porous carbon as a conductive framework in which the redox molecule Alizarin red S is anchored by strong interactions.
Collapse
Affiliation(s)
- Yuanhai Bao
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, China
| | - Hui Xu
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, China
| | - Pengdong Chen
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, China
| | - Yuanqiang Zhu
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, China
| | - Shasha Zuo
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, China
| | - Xiuqin Kong
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, China
| | - Yong Chen
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, China
| |
Collapse
|
11
|
Eom H, Kim J, Nam I, Bae S. Recycling Black Tea Waste Biomass as Activated Porous Carbon for Long Life Cycle Supercapacitor Electrodes. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6592. [PMID: 34772115 PMCID: PMC8585355 DOI: 10.3390/ma14216592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022]
Abstract
Value creation through waste recycling is important for a sustainable society and future. In particular, biomass, which is based on crops, is a great recyclable resource that can be converted into useful materials. Black tea is one of the most cultivated agricultural products in the world and is mostly discarded after brewing. Herein, we report the application of black tea waste biomass as electrode material for supercapacitors through the activation of biomass hydrochar under various conditions. Raw black tea was converted into hydrochar via a hydrothermal carbonization process and then activated with potassium hydroxide (KOH) to provide a large surface area and porous structure. The activation temperature and ratio of KOH were controlled to synthesize the optimal black tea carbon (BTC) with a large surface area and porosity suitable for use as electrode material. This method suggests a direction in which the enormous amount of biomass, which is simply discarded, can be utilized in the energy storage system. The synthesized optimal BTC has a large surface area of 1062 m2 and specific capacitance up to 200 F∙g-1 at 1 mV∙s-1. Moreover, it has 98.8% retention of charge-discharge capacitance after 2000 cycles at the current density of 5 A∙g-1.
Collapse
Affiliation(s)
- Hojong Eom
- School of Chemical Engineering and Materials Science, Department of Intelligent Energy and Industry, Department of Advanced Materials Engineering, Chung-Ang University, Seoul 06974, Korea;
| | - Jooyoung Kim
- Department of Chemistry, Seoul Women’s University, Seoul 01797, Korea;
| | - Inho Nam
- School of Chemical Engineering and Materials Science, Department of Intelligent Energy and Industry, Department of Advanced Materials Engineering, Chung-Ang University, Seoul 06974, Korea;
| | - Sunyoung Bae
- Department of Chemistry, Seoul Women’s University, Seoul 01797, Korea;
| |
Collapse
|
12
|
Devi RK, Muthusankar G, Chen SM, Gopalakrishnan G. In situ formation of Co 3O 4 nanoparticles embedded N-doped porous carbon nanocomposite: a robust material for electrocatalytic detection of anticancer drug flutamide and supercapacitor application. Mikrochim Acta 2021; 188:196. [PMID: 34036435 DOI: 10.1007/s00604-021-04860-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/13/2021] [Indexed: 11/27/2022]
Abstract
The one-step synthesis of heteroatom-doped porous carbons is reported with the in situ formation of cobalt oxide nanoparticles for dual electrochemical applications (i.e., electrochemical sensor and supercapacitor). A single molecular template of zeolitic imidazole framework-67 (ZIF-67) was utilized for the solid-state synthesis of cobalt oxide nanoparticle-decorated nitrogen-doped porous carbon (Co3O4@NPC) nanocomposite through a facile calcination treatment. For the first time, Co3O4@NPC nanocomposite derived from ZIF-67 has been applied as an electrode material for the efficient electrochemical detection of anticancer drug flutamide (FLU). The cyclic voltammetry studies were performed in the operating potential from 0.15 to - 0.65 V (vs. Ag/AgCl). Interestingly, the fabricated drug sensor exhibited a very low reduction potential (- 0.42 V) compared to other reported sensors. The fabricated sensor exhibited good analytical performance in terms of low detection limit (12 nM), wide linear range (0.5 to 400 μM), and appreciable recovery results (~ 98%, RSD 1.7% (n = 3)) in a human urine sample. Hereafter, we also examined the supercapacitor performance of the Co3O4@NPC-modified Ni foam in a 1M KOH electrolyte, and noticeable a specific capacitance of 525 F g-1 at 1.5 A g-1 was attained, with long-term cycling stability. The Co3O4@NPC nanocomposite supercapacitor experiments outperform the associated MOF-derived carbons and the Co3O4-based nanostructure-modified electrodes.
Collapse
Affiliation(s)
- Ramadhass Keerthika Devi
- Department of Chemical Engineering and Biotechnology, College of Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, Republic of China
| | - Ganesan Muthusankar
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei, Taiwan.,Department of Industrial Chemistry, Alagappa University, Karaikudi, Tamil Nadu, 630003, India
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, College of Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, Republic of China.
| | - Gopu Gopalakrishnan
- Department of Industrial Chemistry, Alagappa University, Karaikudi, Tamil Nadu, 630003, India
| |
Collapse
|