1
|
Song X, Li Q, Han Z, Hou B, Pan YT, Geng Z, Zhang J, Haurie Ibarra L, Yang R. Synchronous modification of ZIF-67 with cyclomatrix polyphosphazene coating for efficient flame retardancy and mechanical reinforcement of epoxy resin. J Colloid Interface Sci 2024; 667:223-236. [PMID: 38636224 DOI: 10.1016/j.jcis.2024.04.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 04/20/2024]
Abstract
Cyclomatrix polyphosphazenes have attracted widespread attention in the field of polymer flame retardancy. Nevertheless, the optimal manifestation of their distinctive structural attributes and flame-retardant properties necessitates a judicious selection of condensation monomers and synergistic templates during the fabrication of polyphosphazene flame retardants. In our previous studies, it was discovered that when ZIF-67 is functionalized with polyphosphazene, the by-product HCl from phosphazene polycondensation causes etching on ZIF-67. Based on this "synchronous etching" effect, a series of hybrid materials comprising cyclomatrix polyphosphazene and ZIF-67, denoted as ZIF-67@PDS (PDS, poly-(cyclotriphosphazene-co-4,4'-diaminodiphenyl sulfone)), ZIF-67@PBS (PBS, poly-(cyclotriphosphazene-co-Bisphenol A)), and ZIF-67@PZS (PZS, poly-(cyclotriphosphazene-co-4,4'-sulfonyldiphenol)), was synthesized utilizing DDS (4,4'-diaminodiphenyl sulfone), BPA (Bisphenol A), and BPS (4,4'-sulfonyldiphenol) monomers as precursors, respectively. Upon the incorporation of 2.0 wt.% of ZIF-67@PDS, ZIF-67@PBS, and ZIF-67@PZS, the flame retardant and mechanical characteristics of EP composites exhibited marked enhancement. The unique structural characteristics of hybrid and the synergistic effects of Co-P-N contribute to the improvement of comprehensive properties. Compared with pure EP, EP/ZIF-67@PZS has the best enhancement effect, and its pHRR, THR, and TSP decreased by 34.0%, 30.0%, and 40.5%, respectively. In terms of mechanical strength, ZIF-67@PZS also increases the flexural strength of EP by 37.42%. Relying on the "synchronous etching" effect, this study explores and verifies the effective combination of ZIF-67 and different types of polyphosphazenes, and obtains a series of ZIF-67-derived cyclomatrix polyphosphazene hybrids with different morphologies and properties in one step. It provides a new idea and strategy for the simultaneous modification of polyphosphazene materials and the preparation of multifunctional flame retardants in the future.
Collapse
Affiliation(s)
- Xiaoning Song
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Qianlong Li
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Zhengde Han
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Boyou Hou
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China; Centre for Future Materials, University of Southern Queensland, Springfield 4300, Australia; School of Agriculture and Environmental Science, University of Southern Queensland, Springfield 4300, Australia
| | - Ye-Tang Pan
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Zhishuai Geng
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Jing Zhang
- Materials Design and Engineering Department, Beijing Institute of Fashion Technology, Beijing 100029, PR China.
| | - Laia Haurie Ibarra
- School of Building Construction (EPSEB), Universitat Politècnica de Catalunya, Av. Doctor Marañon 44, 08028 Barcelona, Spain
| | - Rongjie Yang
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| |
Collapse
|
2
|
Wu S, Xu F, Li Y, Liu C, Zhang Y, Fan H. Synergistically enhanced sodium ion storage from encapsulating highly dispersed cobalt nanodots into N, P, S tri-doped hexapod carbon framework. J Colloid Interface Sci 2023; 649:741-749. [PMID: 37385039 DOI: 10.1016/j.jcis.2023.06.159] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 07/01/2023]
Abstract
Development of multitudinous heteroatoms co-doped carbon nanomaterials with pleasurable electrochemical behavior for sodium ion batteries is still an enormous challenge. Herein, high dispersion cobalt nanodots encapsulating into N, P, S tri-doped hexapod carbon (H-Co@NPSC) have been victoriously synthesized via H-ZIF67@polymer template strategy with using poly (hexachlorocyclophos-phazene and 4,4'-sulfonyldiphenol) as both carbon source and N, P, S multiple heteroatom doping sources. The uniform distribution of cobalt nanodots and the Co-N bonds are conducive to form a high conductive network, which synergistically increase a lot adsorption sites and lessens the diffusion energy barrier, thereby improving the fast Na+ ions diffusion kinetics. Consequently, H-Co@NPSC delivers the reversible capacity of 311.1 mAh g-1 at 1 A g-1 after 450 cycles with 70% capacity storage rate, while obtains the capacity of 237.1 mAh g- 1 after 200 cycles at the elevated current densities of 5 A g-1 as an excellent anode material for SIBs. These interesting results pave a generous avenue for the exploitation of promising carbon anode materials for Na+ storage.
Collapse
Affiliation(s)
- Shimei Wu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Feng Xu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yining Li
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Chilin Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yufei Zhang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Haosen Fan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
3
|
Xu X, Wang T, Wen Y, Wen X, Chen X, Hao C, Lei Q, Mijowska E. Intumescent flame retardants inspired template-assistant synthesis of N/P dual-doped three-dimensional porous carbons for high-performance supercapacitors. J Colloid Interface Sci 2022; 613:35-46. [PMID: 35032775 DOI: 10.1016/j.jcis.2022.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/15/2022]
Abstract
Heteroatom-doped three-dimensional (3D) porous carbons possess great potential as promising electrodes for high-performance supercapacitors. Inspired by the inherent features of intumescent flame retardants (IFRs) with universal availability, rich heteroatoms and easy thermal-carbonization to form porous carbons, herein we proposed a self-assembling and template self-activation strategy to produce N/P dual-doped 3D porous carbons by nano-CaCO3 template-assistant carbonization of IFRs. The IFRs-derived carbon exhibited large specific surface area, well-balanced hierarchical porosity, high N/P contents and interconnected 3D skeleton. Benefitting from these predominant characteristics on structure and composition, the assembled supercapacitive electrodes exhibited outstanding electrochemical performances. In three-electrode 6 M KOH system, it delivered high specific capacitances of 407 F g-1 at 0.5 A g-1, and good rate capability of 61.2% capacitance retention at 20 A g-1. In two-electrode organic EMIMBF4/PC system, its displayed high energy density of 62.8 Wh kg-1 at a power density of 748.4 W kg-1, meanwhile it had excellent cycling stability with 84.7% capacitance retention after 10,000 cycles. To our best knowledge, it is the first example to synthesize porous carbon from IFRs precursor. Thus, the current work paved a novel and low-cost way for the production of high-valued carbon material, and expanded its application for high-performance energy storage devices.
Collapse
Affiliation(s)
- Xiaodong Xu
- Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, al. Piastów 45, 70-311, Szczecin, Poland
| | - Ting Wang
- Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, al. Piastów 45, 70-311, Szczecin, Poland
| | - Yanliang Wen
- Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, al. Piastów 45, 70-311, Szczecin, Poland
| | - Xin Wen
- Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, al. Piastów 45, 70-311, Szczecin, Poland; Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Xuecheng Chen
- Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, al. Piastów 45, 70-311, Szczecin, Poland
| | - Chuncheng Hao
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qingquan Lei
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ewa Mijowska
- Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, al. Piastów 45, 70-311, Szczecin, Poland
| |
Collapse
|
4
|
A Review of Supercapacitors: Materials Design, Modification, and Applications. ENERGIES 2021. [DOI: 10.3390/en14227779] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Supercapacitors (SCs) have received much interest due to their enhanced electrochemical performance, superior cycling life, excellent specific power, and fast charging–discharging rate. The energy density of SCs is comparable to batteries; however, their power density and cyclability are higher by several orders of magnitude relative to batteries, making them a flexible and compromising energy storage alternative, provided a proper design and efficient materials are used. This review emphasizes various types of SCs, such as electrochemical double-layer capacitors, hybrid supercapacitors, and pseudo-supercapacitors. Furthermore, various synthesis strategies, including sol-gel, electro-polymerization, hydrothermal, co-precipitation, chemical vapor deposition, direct coating, vacuum filtration, de-alloying, microwave auxiliary, in situ polymerization, electro-spinning, silar, carbonization, dipping, and drying methods, are discussed. Furthermore, various functionalizations of SC electrode materials are summarized. In addition to their potential applications, brief insights into the recent advances and associated problems are provided, along with conclusions. This review is a noteworthy addition because of its simplicity and conciseness with regard to SCs, which can be helpful for researchers who are not directly involved in electrochemical energy storage.
Collapse
|