1
|
Palve AM, Vani OV, Srivastava R, Lin W, Gupta RK. Ni 12P 5 and Ni 12P 5-rGO for multifunctional electrocatalyst and supercapacitor application. Heliyon 2025; 11:e42414. [PMID: 39991229 PMCID: PMC11847079 DOI: 10.1016/j.heliyon.2025.e42414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/25/2024] [Accepted: 01/30/2025] [Indexed: 02/25/2025] Open
Abstract
Transition metal phosphides are crucial for various environmental and energy applications. In this study, porous Ni12P5 and Ni12P5-rGO were synthesized using a one-step solvothermal method. Red phosphorus served as the phosphorus source, while ethylene glycol acted as a capping agent to promote the formation of nanomaterials within a nitrogen-rich atmosphere. The catalytic performance of these materials was evaluated through their hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and capacitance properties. Notably, Ni12P5-rGO exhibited Tafel slopes of 66 mV/dec for OER and 33 mV/dec for HER, indicating enhanced charge transfer efficiency compared to Ni12P5, which showed slopes of 78 mV/dec and 102 mV/dec, respectively. This improvement suggests that Ni12P5-rGO facilitates faster electron transfer, resulting in superior catalytic performance. Additionally, the synergistic effect of reduced graphene oxide (rGO) contributes to improved charge storage capabilities. The Ni12P5-rGO demonstrated a specific capacitance of 192 F/g, significantly higher than the 110 F/g observed for Ni12P5 at a current density of 1 A/g. Remarkably, these materials maintained their capacity over 5000 cycles, achieving a commendable 98 % coulombic efficiency. These findings highlight the potential of Ni12P5-rGO as an effective material for energy conversion and storage applications, showcasing its promising role in advancing the efficiency of related technologies.
Collapse
Affiliation(s)
- Anil M. Palve
- Department of Chemistry, Mahatma Phule ASC College, Panvel, Navi-Mumbai, MH, 410206, India
| | - Omkar V. Vani
- Department of Chemistry, Mahatma Phule ASC College, Panvel, Navi-Mumbai, MH, 410206, India
| | - Rishabh Srivastava
- Department of Physics, Pittsburg State University, Pittsburg, KS, 66762, USA
- National Institute of Material Advancement, Pittsburg State University, Pittsburg, KS, 66762, USA
| | - Wang Lin
- National Institute of Material Advancement, Pittsburg State University, Pittsburg, KS, 66762, USA
| | - Ram K. Gupta
- National Institute of Material Advancement, Pittsburg State University, Pittsburg, KS, 66762, USA
- Department of Chemistry, Pittsburg State University, Pittsburg, KS, 66762, USA
| |
Collapse
|
2
|
Hu R, Jiao L, Liang H, Feng Z, Gao B, Wang XF, Song XZ, Liu LZ, Tan Z. Engineering Interfacial Built-in Electric Field in Polymetallic Phosphide Heterostructures for Superior Supercapacitors and Electrocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304132. [PMID: 37381650 DOI: 10.1002/smll.202304132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/18/2023] [Indexed: 06/30/2023]
Abstract
Herein, a patterned rod-like CoP@NiCoP core-shell heterostructure is designed to consist of CoP nanowires cross-linked with NiCoP nanosheets in tight strings. The interfacial interaction within the heterojunction between the two components generates a built-in electric field that adjusts the interfacial charge state and create more active sites, accelerating the charge transfer and improving supercapacitor and electrocatalytic performance. The unique core-shell structure suppresses the volume expansion during charging and discharging, achieving excellent stability. As a result, CoP@NiCoP exhibits a high specific capacitance of 2.9 F cm-2 at a current density of 3 mA cm-2 and a high ion diffusion rate (Dion is 2.95 × 10-14 cm2 s-1 ) during charging/discharging. The assembled asymmetric supercapacitor CoP@NiCoP//AC exhibits a high energy density of 42.2 Wh kg-1 at a power density of 126.5 W kg-1 and excellent stability with a capacitance retention rate of 83.8% after 10 000 cycles. Furthermore, the modulated effect induced by the interfacial interaction also endows the self-supported electrode with excellent electrocatalytic HER performance with an overpotential of 71 mV at 10 mA cm-2 . This research may provide a new perspective on the generation of built-in electric field through the rational design of heterogeneous structures for improving the electrochemical and electrocatalytical performance.
Collapse
Affiliation(s)
- Ruiyuan Hu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Lei Jiao
- Key Laboratory of Materials Modification by Laser Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian, 116024, China
| | - Hongjian Liang
- Key Laboratory of Materials Modification by Laser Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian, 116024, China
| | - Zhifang Feng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Bin Gao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xiao-Feng Wang
- Key Laboratory of Materials Modification by Laser Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian, 116024, China
| | - Xue-Zhi Song
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Li-Zhao Liu
- Key Laboratory of Materials Modification by Laser Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian, 116024, China
| | - Zhenquan Tan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
3
|
Liu Y, Fan X, Zhang Z, Li C, Zhang S, Li Z, Liu L. Oxygen-doped NiCoP derived from Ni-MOFs for high performance asymmetric supercapacitor. NANOTECHNOLOGY 2023; 34:475702. [PMID: 37579745 DOI: 10.1088/1361-6528/acefd7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
Oxygen doping strategy is one of the most effective methods to improve the electrochemical properties of nickel-cobalt phosphide (NiCoP)-based capacitors by adjusting its inherent electronic structure. In this paper, O-doped NiCoP microspheres derived from porous nanostructured nickel metal-organic frameworks (Ni-MOFs) were constructed through solvothermal method followed by phosphorization treatment. The O-doping concentration has a siginificant influence on the rate performance and cycle stability. The optimized O-doped NiCoP electrode material shows a specific capacitance of 632.4 F-g-1at 1 A-g-1and a high retention rate of 56.9% at 20 A g-1. The corresponding NiCoP-based asymmetric supercapacitor exhibits a high energy density of 30.1 Wh kg-1when the power density is 800.9 W kg-1, and can still maintain 82.1% of the initial capacity after 10 000 cycles at 5 A g-1.
Collapse
Affiliation(s)
- Yan Liu
- School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, Shandong, People's Republic of China
| | - Xiaoyan Fan
- School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, Shandong, People's Republic of China
| | - Zikun Zhang
- School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, Shandong, People's Republic of China
| | - Chun Li
- College of Physics and Optoelectronic Engineering, Ocean University of China, Qingdao 266100, Shandong, People's Republic of China
| | - Shuaiyi Zhang
- School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, Shandong, People's Republic of China
| | - Zhenjiang Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong, People's Republic of China
| | - Lin Liu
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong, People's Republic of China
| |
Collapse
|
4
|
Khiem TC, Huy NN, Kwon E, Duan X, Wacławek S, Bedia J, Tsai YC, Ebrahimi A, Ghanbari F, Lin KYA. Hetero-interface-engineered sulfur vacancy and oxygen doping in hollow Co9S8/Fe7S8 nanospheres towards monopersulfate activation for boosting intrinsic electron transfer in paracetamol degradation. APPLIED CATALYSIS B: ENVIRONMENTAL 2023; 330:122550. [DOI: 10.1016/j.apcatb.2023.122550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
|
5
|
Amiri M, Mohammadi Zardkhoshoui A, Hosseiny Davarani SS. Fabrication of nanosheet-assembled hollow copper-nickel phosphide spheres embedded in reduced graphene oxide texture for hybrid supercapacitors. NANOSCALE 2023; 15:2806-2819. [PMID: 36683464 DOI: 10.1039/d2nr06305k] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Owing to their metalloid characteristics with high electrical conductivity, transition metal phosphides (TMPs) have attracted considerable research attention as prospective cathodes for hybrid supercapacitors. Unfortunately, they usually exhibit low rate performance as well as poor longevity, which does not meet the demands of hybrid supercapacitors. The nanocomposite constructed from reduced graphene oxide (rGO) and TMPs with a highly porous nature can effectively overcome the above-mentioned issues, greatly widening their utilization. In this work, we fabricated nanosheet-assembled hollow copper-nickel phosphide spheres (NH-CNPSs) by the controllable phosphatizing of copper-nickel-ethylene glycol (CN-EG) precursors. Then, porous NH-CNPSs were embedded in rGO texture (NH-CNPS-rGO) to form a unique porous nanoarchitecture. The obtained NH-CNPS-rGO has several advantages benefiting as the cathode electrode, such as (i) the hollow structure as well as porous nanosheets are conducive to fast electrolyte diffusion, (ii) the electrical conductivity of NH-CNPS is further enhanced when coupled with the rGO texture, hence promoting electron transfer in the whole structure, (iii) wrapping NH-CNPSs within the rGO texture endows the nanocomposite with much better structural stability, resulting in longer durability of the electrode, And (iv) the porous structures generated in the nanocomposite provide a perfect space for reducing the mass transfer resistance and accessing the electrolyte, thereby boosting the reaction kinetics. The tests demonstrated that the optimal NH-CNPS-rGO electrode revealed a capacity of up to 1075 C g-1, a superior rate capacity, and exceptional longevity of 94.7%. Moreover, a hybrid supercapacitor (NH-CNPS-rGO‖AC) equipped with the NH-CNPS-rGO-cathode electrode and activated carbon (AC)-anode electrode represented a satisfactory energy density of 64 W h kg-1 at 801 W kg-1 and amazing longevity (91.8% retention after 13 000 cycles), which endorses the promising potential of NH-CNPS-rGO for high-efficiency supercapacitors. This research showcases an appropriate method to engineer hollow TMP-rGO nanocomposites as effective materials for supercapacitors.
Collapse
Affiliation(s)
- Maryam Amiri
- Department of Chemistry, Shahid Beheshti University, G. C., Evin, 1983963113, Tehran, Iran.
| | | | | |
Collapse
|
6
|
Hamdi E, Abdelwahab A, Farghali AA, Rouby WMAE, Carrasco-Marín F. 2D Hierarchical NiMoO 4 Nanosheets/Activated Carbon Nanocomposites for High Performance Supercapacitors: The Effect of Nickel to Molybdenum Ratios. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1264. [PMID: 36770269 PMCID: PMC9921724 DOI: 10.3390/ma16031264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Supercapacitors have the potential to be used in a variety of fields, including electric vehicles, and a lot of research is focused on unique electrode materials to enhance capacitance and stability. Herein, we prepared nickel molybdate/activated carbon (AC) nanocomposites using a facile impregnation method that preserved the carbon surface area. In order to study how the nickel-to-molybdenum ratio affects the efficiency of the electrode, different ratios between Ni-Mo were prepared and tested as supercapacitor electrodes, namely in the following ratios: 1:1, 1:2, 1:3, 1:4, and 1:5. X-ray diffraction, X-ray photoelectron spectroscopy, FESEM, HRTEM, and BET devices were extensively used to analyze the structure of the nanocomposites. The structure of the prepared nickel molybdates was discovered to be 2D hierarchical nanosheets, which functionalized the carbon surface. Among all of the electrodes, the best molar ratio between Ni-Mo was found to be 1:3 NiMo3/AC reaching (541 F·g-1) of specific capacitance at a current density of 1 A·g-1, and 67 W·h·Kg-1 of energy density at a power density of 487 W·Kg-1. Furthermore, after 4000 repetitive cycles at a large current density of 4 A·g-1, an amazing capacitance stability of 97.7% was maintained. This remarkable electrochemical activity for NiMo3/AC could be credited towards its 2D hierarchical structure, which has a huge surface area of 1703 m2·g-1, high pore volume of 0.925 cm3·g-1, and large particle size distribution.
Collapse
Affiliation(s)
- Esraa Hamdi
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Beni-Suef, Egypt
| | - Abdalla Abdelwahab
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Beni-Suef, Egypt
- Faculty of Science, Galala University, Sokhna 43511, Suez, Egypt
| | - Ahmed A. Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Beni-Suef, Egypt
| | - Waleed M. A. El Rouby
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Beni-Suef, Egypt
| | - Francisco Carrasco-Marín
- Carbon Materials Research Group, Faculty of Science, University of Granada, 18071 Granada, Spain
| |
Collapse
|
7
|
Jiang S, Pang M, Pang M, Song J, Wang R, Yang H, Pan Q, He W, Mao M, Li S. 3D emerging nanosheets comprising hierarchical CoMoO4/MnO2 composites for flexible all-solid-state asymmetric supercapacitors. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Bai Y, Liang X, Yang X, Wang L, Li X. Flexible zinc ion hybrid capacitors with high energy density and long cycling life based on nanoneedle-like MnO2@CC electrode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Manavalan S, Veerakumar P, Chen SM, Karuppusamy N. Development of robust multifunctional CrNiCo-P/GCN catalyst for oxygen evolution reaction, electrochemical sensing, and photodegradation of roxarsone. NANOSCALE 2022; 14:16233-16248. [PMID: 36282107 DOI: 10.1039/d2nr03755f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, we designed a CrNiCo-P/GCN composite for use as a high-performance multifunctional catalyst for the oxygen evolution reaction (OER), electrochemical determination, and photodegradation of roxarsone (ROX). CrNiCo-P/GCN demonstrates favorable charge resistance and electrical conductance due to its intrinsic properties. It exhibits an admirable OER overpotential of 290 mV with a lower Tafel plot value of 125 mV dec-1 in alkaline media and compared with the control samples. Furthermore, this composite also demonstrates high performance in electrochemical sensing of ROX over a wide concentration range of 1-413 μM with a lower limit of detection (LOD) of 31 nM in phosphate buffer. Moreover, this composite is a promising electrocatalyst for ROX sensors in practical analysis and also possesses excellent photodegradation of ROX under visible light irradiation.
Collapse
Affiliation(s)
- Shaktivel Manavalan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan.
| | - Pitchaimani Veerakumar
- Institute of Atomic and Molecular Sciences, Academia Sinica, No. 1, Roosevelt Road, Section 4, Taipei 10617, Taiwan
- Department of Chemistry, National Taiwan University, No. 1, Roosevelt Road, Section 4, Taipei 10617, Taiwan.
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan.
| | - Naveen Karuppusamy
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan.
| |
Collapse
|
10
|
Kong J, Zhang J, Shen M, Zhang S, Shen P, Ren C. Preparation of manganese(II) oxide doped zinc oxide nanocomposites with improved antibacterial activity via ROS. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Wang G, Yi F, Zhong J, Gao A, Liu C, Li Q, Shu D, Ling J. Towards High-Performance Supercapacitor Electrodes via Achieving 3D Cross-Network and Favorable Surface Chemistry. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34637-34648. [PMID: 35876804 DOI: 10.1021/acsami.2c06160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Transition metal phosphides/phosphates (TMPs) are considered appealing electrode materials in energy-related fields, especially in supercapacitors. However, the dilemma of inadequate electrode kinetics and dimensional unreliability evoked by a huge volume variation during cycling significantly plagues their progress. To mitigate this issue, in this work, a 3D cross-network in situ assembled via self-derived N-doped carbon hybrid Ni-Co-P/POx 2D sheets is fabricated. Particularly, high-Fermi-level N-doped carbon well confines Ni-Co-P/POx nanoparticles at the molecular level, and N-doping leads to redistribution of spin/electron density in the carbon skeleton, effectively regulating the electron environment of nearby Ni-Co-based moieties, resulting in a relatively lower surface work function, as known via experimental and Kelvin probe force microscopy (KPFM) results, which favors electron flee from the electrode surface and facilitates electron transport toward a rapid supercapacitor response. Moreover, the well-defined 3D cross-network architectures featured with in-plane pores and interconnected with each other can provide more ion/electron transfer pathways and 2D sheets with excellent surface chemistry available for sustainable ion/electron mobility, synergistically affording the favorable electrode kinetics. Accordingly, the resultant Ni-Co-P/POx@NC electrode shows admirable specific capacitance, excellent rate survivability, and long-term cyclability. The as-assembled asymmetric device exhibits remarkable energy and power outputs (48.5 Wh kg-1 and 7500 W kg-1), superior to many reported devices. Furthermore, our devices possess the prominent ability to power a commercial electronic thermometer for 1560 s at least, showcasing superb application prospects.
Collapse
Affiliation(s)
- Gengyi Wang
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Fenyun Yi
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, South China Normal University, Guangzhou 510006, P. R. China
- Experimental Teaching Demonstration Center of New Energy Materials and Devices, South China Normal University, Guangzhou 510006, P. R. China
| | - Junhao Zhong
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Aimei Gao
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, South China Normal University, Guangzhou 510006, P. R. China
- Experimental Teaching Demonstration Center of New Energy Materials and Devices, South China Normal University, Guangzhou 510006, P. R. China
| | - Cong Liu
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Qizhi Li
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Dong Shu
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, South China Normal University, Guangzhou 510006, P. R. China
- Experimental Teaching Demonstration Center of New Energy Materials and Devices, South China Normal University, Guangzhou 510006, P. R. China
| | - Jingzhou Ling
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
12
|
Padha B, Verma S, Mahajan P, Gupta V, Khosla A, Arya S. Role of Electrochemical Techniques for Photovoltaic and Supercapacitor Applications. Crit Rev Anal Chem 2022; 54:707-741. [PMID: 35830363 DOI: 10.1080/10408347.2022.2096401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Electrochemistry forms the base of large-scale production of various materials, encompassing numerous applications in metallurgical engineering, chemical engineering, electrical engineering, and material science. This field is important for energy harvesting applications, especially supercapacitors (SCs) and photovoltaic (PV) devices. This review examines various electrochemical techniques employed to fabricate and characterize PV devices and SCs. Fabricating these energy harvesting devices is carried out by electrochemical methods, including electroreduction, electrocoagulation, sol-gel process, hydrothermal growth, spray pyrolysis, template-assisted growth, and electrodeposition. The characterization techniques used are cyclic voltammetry, electrochemical impedance spectroscopy, photoelectrochemical characterization, galvanostatic charge-discharge, and I-V curve. A study on different recently reported materials is also presented to analyze their performance in various energy harvesting applications regarding their efficiency, fill factor, power density, and energy density. In addition, a comparative study of electrochemical fabrication techniques with others (including physical vapor deposition, mechanical milling, laser ablation, and centrifugal spinning) has been conducted. The various challenges of electrochemistry in PVs and SCs are also highlighted. This review also emphasizes the future perspectives of electrochemistry in energy harvesting applications.
Collapse
Affiliation(s)
- Bhavya Padha
- Department of Physics, University of Jammu, Jammu, Jammu, and Kashmir, India
| | - Sonali Verma
- Department of Physics, University of Jammu, Jammu, Jammu, and Kashmir, India
| | - Prerna Mahajan
- Department of Physics, University of Jammu, Jammu, Jammu, and Kashmir, India
| | - Vinay Gupta
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ajit Khosla
- Department of Mechanical System Science, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, Japan
| | - Sandeep Arya
- Department of Physics, University of Jammu, Jammu, Jammu, and Kashmir, India
| |
Collapse
|
13
|
|
14
|
Chen M, Lu Y, Li W, Qi P, Liu G, Wang S, Chen Z, Tang Y. In-situ Transformation Constructs CoTe/Co/CoO Nanosheet Arrays with Rich Grain Boundaries to Enhance Electrochemical Performance. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Sun X, Liang H, Yu H, Bai J, Li C. Embedding Co 2P nanoparticles in Cu doping carbon fibers for Zn-air batteries and supercapacitors. NANOTECHNOLOGY 2022; 33:135202. [PMID: 34915456 DOI: 10.1088/1361-6528/ac43ea] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Developing highly efficient and non-precious materials for Zn-air batteries (ZABs) and supercapacitors (SCs) are still crucial and challenging. Herein, electronic reconfiguration and introducing conductive carbon-based materials are simultaneously conducted to enhance the ZABs and SCs performance of Co2P. We develop a simple and efficient electrospinning technology followed by carbonization process to synthesize embedding Co2P nanoparticles in Cu doping carbon nanofibers (Cu-Co2P/CNFs). As a result, the 7% Cu-Co2P/CNFs presents high oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activity (half-wave potential of 0.792 V for ORR, an overpotential of 360 mV for OER). The ZABs exhibit a power density of 230 mW cm-2and excellent discharge-charge stability of 80 h. In addition, the 7% Cu-Co2P/CNFs show the specific capacitance of 558 F g-1at 1 A g-1. Moreover, the 7% Cu-Co2P/CNFs//CNFs asymmetric supercapacitor was assembled applying 7% Cu-Co2P/CNFs electrode and pure CNFs, which exhibits a high energy density (25.9 Wh kg-1), exceptional power density (217.5 kW kg-1) and excellent cycle stability (96.6% retention after 10 000 cycles). This work may provide an effective way to prepared Co2P based materials for ZABs and SCs applications.
Collapse
Affiliation(s)
- Xingwei Sun
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot 010051, People's Republic of China
- Inner Mongolia Key Laboratory of Industrial Catalysis, Hohhot 010051, People's Republic of China
| | - Haiou Liang
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot 010051, People's Republic of China
- Inner Mongolia Key Laboratory of Industrial Catalysis, Hohhot 010051, People's Republic of China
| | - Haiyan Yu
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot 010051, People's Republic of China
- Inner Mongolia Key Laboratory of Industrial Catalysis, Hohhot 010051, People's Republic of China
| | - Jie Bai
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot 010051, People's Republic of China
- Inner Mongolia Key Laboratory of Industrial Catalysis, Hohhot 010051, People's Republic of China
| | - Chunping Li
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot 010051, People's Republic of China
- Inner Mongolia Key Laboratory of Industrial Catalysis, Hohhot 010051, People's Republic of China
| |
Collapse
|
16
|
Wang Y, Zhang Y, Du C, Chen J, Tian Z, Xie M, Wan L. Rational synthesis of CoFeP@nickel-manganese sulfide core-shell nanoarrays for hybrid supercapacitors. Dalton Trans 2021; 50:17181-17193. [PMID: 34782904 DOI: 10.1039/d1dt03196a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transition metal phosphide electrodes, particularly those with unique morphologies and micro-/nanostructures, have demonstrated desirable capabilities for hybrid supercapacitor applications by virtue of their superior electrical conductivity and high electrochemical activity. Here, three-dimensional hierarchical CoFeP@nickel-manganese sulfide nanoarrays were in situ constructed on a flexible carbon cloth via a hydrothermal method, a phosphorization process, followed by an electrodeposition approach. In this smart nanoarchitecture, CoFeP nanorods grown on carbon cloth act as the conductive core for rapid electron transfer, while the nickel-manganese sulfide nanosheets decorated on the surface of CoFeP serve as the shell for efficient ion diffusion, forming a stable core-shell heterostructure with enhanced electrical conductivity. Benefiting from the synergy of the two components and the generation of a heterointerface with a modified electronic structure, The CoFeP@nickel-manganese sulfide electrodes deliver a high capacity of 260.7 mA h g-1 at 1 A g-1, excellent rate capability, and good cycling stability. More importantly, an aqueous hybrid supercapacitor based on CoFeP@nickel-manganese sulfide as a positive electrode and a lotus pollen-derived hierarchical porous carbon as a negative electrode is constructed to display a maximum energy density of 60.1 W h kg-1 at 371.8 W kg-1 and a good cycling stability of 85.7% capacitance retention after 10 000 cycles.
Collapse
Affiliation(s)
- Yameng Wang
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, China. .,Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Yan Zhang
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Cheng Du
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Jian Chen
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Zhengfang Tian
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, China. .,Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Mingjiang Xie
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, China. .,Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Liu Wan
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, China. .,Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| |
Collapse
|
17
|
Electrochemical Effect of Cokes‐Derived Activated Carbon with Partially Graphitic Structure for Hybrid Supercapacitors. ChemElectroChem 2021. [DOI: 10.1002/celc.202100593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|