1
|
Brzęczek-Szafran A, Gwóźdź M, Gaida B, Krzywiecki M, Pawlyta M, Blacha-Grzechnik A, Kolanowska A, Chrobok A, Janas D. Bio-based protic salts as precursors for sustainable free-standing film electrodes. Sci Rep 2024; 14:11106. [PMID: 38750130 PMCID: PMC11096361 DOI: 10.1038/s41598-024-61553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
Transforming amines with low boiling points and high volatilities into protic salts is a versatile strategy to utilize low molecular weight compounds as precursors for N-doped carbon structures in a straightforward carbonization procedure. Herein, conventional mineral acids commonly used for the synthesis of protic salts were replaced by bio-derived phytic acid, which, combined with various amines and amino acids, yielded partially or fully bio-derived protic salts. The biomass-based salts showed higher char-forming ability than their mineral acid-based analogs (up to 55.9% at 800°), simultaneously providing carbon materials with significant porosity (up to 1177 m2g-1) and a considerable level of N,P,O-doping. Here, we present the first comprehensive study on the correlation between the structure of the bio-derived protic precursors and the properties of derived carbon materials to guide future designs of biomass-derived precursors for the one-step synthesis of sustainable carbon materials. Additionally, we demonstrate how to improve the textural properties of the protic-salt-derived carbons (which suffer from high brittleness) by simply upgrading them into highly flexible nanocomposites using high-quality single-walled carbon nanotubes. Consequently, self-standing electrodes for the oxygen reduction reaction were created.
Collapse
Affiliation(s)
| | - Magdalena Gwóźdź
- Faculty of Chemistry, Silesian University of Technology, 44-100, Gliwice, Poland
| | - Bartłomiej Gaida
- Faculty of Chemistry, Silesian University of Technology, 44-100, Gliwice, Poland
| | - Maciej Krzywiecki
- Department of Applied Physics, Institute of Physics CSE, Silesian University of Technology, 44-100, Gliwice, Poland
| | - Mirosława Pawlyta
- Materials Research Laboratory, Faculty of Mechanical Engineering, Silesian University of Technology, 44-100, Gliwice, Poland
| | | | - Anna Kolanowska
- Faculty of Chemistry, Silesian University of Technology, 44-100, Gliwice, Poland
| | - Anna Chrobok
- Faculty of Chemistry, Silesian University of Technology, 44-100, Gliwice, Poland
| | - Dawid Janas
- Faculty of Chemistry, Silesian University of Technology, 44-100, Gliwice, Poland.
| |
Collapse
|
2
|
Bhattacharjee U, Gautam A, Martha SK. Effect of Varying Carbon Microstructures on the Ion Storage Behavior of Dual Carbon Lithium-ion Capacitor. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
3
|
Highly defective N-doped carbon/reduced graphene oxide composite cathode material with rapid electrons/ions dual transport channels for high energy density lithium-ion capacitor. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2022.141704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
4
|
High-performance dual carbon lithium-ion capacitors based on nitrogen-doped 2D carbon nanosheets as both anode and cathode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Zhao Z, Yi Z, Li H, Pathak R, Cheng X, Zhou J, Wang X, Qiao Q. Understanding the modulation effect and surface chemistry in a heteroatom incorporated graphene-like matrix toward high-rate lithium-sulfur batteries. NANOSCALE 2021; 13:14777-14784. [PMID: 34473163 DOI: 10.1039/d1nr03390e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The underlying interface effects of sulfur hosts/polysulfides at the molecular level are of great significance to achieve advanced lithium-sulfur batteries. Herein, we systematically study the polysulfide-binding ability and the decomposition energy barrier of Li2S enabled by different kinds of nitrogen (pyridinic N, pyrrolic N and graphitic N) and phosphorus (P-O, PO and graphitic P) doping and decipher their inherent modulation effect. The doping process helps in forming a graphene-like structure and increases the micropores/mesopores, which can expose more active sites to come into contact with polysulfides. First-principles calculations reveal that the PO possesses the highest binding energies with polysulfides due to the weakening of the chemical bonds. Besides, PO as a promoter is beneficial for the free diffusion of lithium ions, and the pyridinic N and pyrrolic N can greatly reduce the kinetic barrier and catalyze the polysulfide conversion. The synergetic effects of nitrogen and phosphorus as bifunctional active centers help in achieving an in situ adsorption-diffusion-conversion process of polysulfides. Benefiting from these features, the graphene-like network achieves superior rate capability (a high reversible capacity of 954 mA h g-1 at 2C) and long-term stability (an ultralow degradation rate of 0.009% around 800 cycles at 5C). Even at a high sulfur loading of 5.6 mg cm-2, the cell can deliver an areal capacity of 4.6 mA h cm-2 at 0.2C.
Collapse
Affiliation(s)
- Zhenxin Zhao
- College of Materials Science and Engineering, Shanxi Key Laboratory of New Energy Materials and Devices, Taiyuan University of Technology, Taiyuan, 030024, PR China.
| | - Zonglin Yi
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Huijun Li
- College of Materials Science and Engineering, Shanxi Key Laboratory of New Energy Materials and Devices, Taiyuan University of Technology, Taiyuan, 030024, PR China.
| | - Rajesh Pathak
- Applied Materials Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Xiaoqin Cheng
- College of Materials Science and Engineering, Shanxi Key Laboratory of New Energy Materials and Devices, Taiyuan University of Technology, Taiyuan, 030024, PR China.
| | - Junliang Zhou
- College of Materials Science and Engineering, Shanxi Key Laboratory of New Energy Materials and Devices, Taiyuan University of Technology, Taiyuan, 030024, PR China.
| | - Xiaomin Wang
- College of Materials Science and Engineering, Shanxi Key Laboratory of New Energy Materials and Devices, Taiyuan University of Technology, Taiyuan, 030024, PR China.
| | - Qiquan Qiao
- Mechanical & Aerospace Engineering, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
6
|
Li FF, Gao JF, He ZH, Kong LB. Realizing high-performance and low-cost lithium-ion capacitor by regulating kinetic matching between ternary nickel cobalt phosphate microspheres anode with ultralong-life and super-rate performance and watermelon peel biomass-derived carbon cathode. J Colloid Interface Sci 2021; 598:283-301. [PMID: 33901853 DOI: 10.1016/j.jcis.2021.04.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/27/2022]
Abstract
Lithium-ion capacitors (LICs) are emerging as one of the most advanced energy storage devices by combining the virtues of both supercapacitors (SCs) and lithium-ion batteries (LIBs). However, the kinetic and capacity mismatch between anode and cathode is the main obstacle to wide applications of LICs. Therefore, the effective strategy of constructing a high-performance LIC is to improve the rate and cycle performance of the anode and the specific capacity of the cathode. Herein, the nickel cobalt phosphate (NiCoP) microspheres anode is demonstrated with robust structural integrity, high electrical conductivity, and fast kinetic feature. Simultaneously, the watermelon-peel biomass-derived carbon (WPBC) cathode is demonstrated a sustainable synthesis strategy with high specific capacity. As expected, the NiCoP exhibits high specific capacities (567 mAh g-1 at 0.1 A g-1), superior rate performance (300 mAh g-1 at 1A g-1), and excellent cycle stability (58 mAh g-1 at 5 A g-1 after 15,000 cycles). The WPBC possesses a high specific surface area (SSA) of 3303.6 m2 g-1 and a high specific capacity of 226 mAh g-1 at 0.1 A g-1. Encouragingly, the NiCoP//WPBC-6 LIC device can deliver high energy density (ED) of 127.4 ± 3.3 and 67 ± 3.8Wh kg-1 at power density (PD) of 190 and 18240 W kg-1 (76.4% capacity retention after 7000 cycles), respectively.
Collapse
Affiliation(s)
- Feng-Feng Li
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Jian-Fei Gao
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Zheng-Hua He
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Ling-Bin Kong
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, PR China; School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China.
| |
Collapse
|
7
|
Chen F, Cheng X, Zhao Z, Wang X. Hierarchical Porous N, P co-doped rGO Modified Separator to Enhance the Cycling Stability of Lithium-sulfur Batteries. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21030117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|