1
|
Su H, Sun J, Wang C, Wang H. Temperature impacts on the growth of hydrogen bubbles during ultrasonic vibration-enhanced hydrogen generation. ULTRASONICS SONOCHEMISTRY 2024; 102:106734. [PMID: 38128391 PMCID: PMC10772823 DOI: 10.1016/j.ultsonch.2023.106734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
To improve the hydrogen precipitation performance on the surface of the catalytic layer of the proton exchange membrane (PEM) hydrogen cathode, ultrasonic vibration was employed to accelerate the detachment of hydrogen bubbles on the surface of the catalytic layer. Based on the energy and mechanical analyses of nano and microbubbles, the hydrogen bubble generation mechanism and the effect of temperature on bubble parameters during the evolution process when the ultrasonic field is coupled with the electric field are investigated. The nucleation frequency of the hydrogen bubbles, the relationship between the pressure and temperature and the operating temperature during the generation and detachment of bubbles as well as the detachment radius of bubbles under the action of the ultrasonic field are obtained. The effects of ultrasound and temperature on hydrogen production were verified by visual experiments. The results show that the operating temperature affects the nucleation, growth, and detachment processes of hydrogen bubbles. The effect of temperature on the nucleation frequency of bubbles mainly comes from the Gibbs free energy required for the electrolysis reaction. The bubble radius and growth rate are both related to the temperature to the power of one-third. Ultrasonic waves enhance the separation of hydrogen bubbles from the catalyst surface by acoustic cavitation and impact effects. An increase in the working temperature reduces the activation energy barriers to be overcome for the electrolysis reaction of water, which together with a decrease in the Gibbs free energy and the surface tension coefficient, leads to an increase in the nucleation frequency of the catalytic layer and a decrease in the radius of bubble detachment, and thus improves the hydrogen precipitation performance. Visualization experiments show that in actual PEM hydrogen production, ultrasonic intensification can promote the formation of nucleation sites. The ultrasonic induced fine bubble flow not only has a drag effect on the bubble, but also intensifies the polymerization growth of the bubble due to the impact of the fine bubble flow, thus speeding up the detachment of the bubble, shortening the covering time of the hydrogen bubble on the surface of the catalytic electrode, reducing the activation voltage loss and improve the hydrogen production efficiency of PEM. The experimental results show that when the electrolyte is 60°C, the maximum hydrogen production efficiency of ultrasound is increased by 7.34%, and the average hydrogen production efficiency is increased by 5.83%.
Collapse
Affiliation(s)
- Hongqian Su
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Building Environment and Energy Power Engineering Experimental Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Jindong Sun
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Building Environment and Energy Power Engineering Experimental Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Caizhu Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Building Environment and Energy Power Engineering Experimental Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Haofeng Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Building Environment and Energy Power Engineering Experimental Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| |
Collapse
|
2
|
Sangtam BT, Park H. Review on Bubble Dynamics in Proton Exchange Membrane Water Electrolysis: Towards Optimal Green Hydrogen Yield. MICROMACHINES 2023; 14:2234. [PMID: 38138403 PMCID: PMC10745635 DOI: 10.3390/mi14122234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
Water electrolysis using a proton exchange membrane (PEM) holds substantial promise to produce green hydrogen with zero carbon discharge. Although various techniques are available to produce hydrogen gas, the water electrolysis process tends to be more cost-effective with greater advantages for energy storage devices. However, one of the challenges associated with PEM water electrolysis is the accumulation of gas bubbles, which can impair cell performance and result in lower hydrogen output. Achieving an in-depth knowledge of bubble dynamics during electrolysis is essential for optimal cell performance. This review paper discusses bubble behaviors, measuring techniques, and other aspects of bubble dynamics in PEM water electrolysis. It also examines bubble behavior under different operating conditions, as well as the system geometry. The current review paper will further improve the understanding of bubble dynamics in PEM water electrolysis, facilitating more competent, inexpensive, and feasible green hydrogen production.
Collapse
Affiliation(s)
| | - Hanwook Park
- Department of Biomedical Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Asan 31538, Chungnam, Republic of Korea;
| |
Collapse
|
3
|
Ding L, Xie Z, Yu S, Wang W, Terekhov AY, Canfield BK, Capuano CB, Keane A, Ayers K, Cullen DA, Zhang FY. Electrochemically Grown Ultrathin Platinum Nanosheet Electrodes with Ultralow Loadings for Energy-Saving and Industrial-Level Hydrogen Evolution. NANO-MICRO LETTERS 2023; 15:144. [PMID: 37269447 PMCID: PMC10239421 DOI: 10.1007/s40820-023-01117-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/26/2023] [Indexed: 06/05/2023]
Abstract
Nanostructured catalyst-integrated electrodes with remarkably reduced catalyst loadings, high catalyst utilization and facile fabrication are urgently needed to enable cost-effective, green hydrogen production via proton exchange membrane electrolyzer cells (PEMECs). Herein, benefitting from a thin seeding layer, bottom-up grown ultrathin Pt nanosheets (Pt-NSs) were first deposited on thin Ti substrates for PEMECs via a fast, template- and surfactant-free electrochemical growth process at room temperature, showing highly uniform Pt surface coverage with ultralow loadings and vertically well-aligned nanosheet morphologies. Combined with an anode-only Nafion 117 catalyst-coated membrane (CCM), the Pt-NS electrode with an ultralow loading of 0.015 mgPt cm-2 demonstrates superior cell performance to the commercial CCM (3.0 mgPt cm-2), achieving 99.5% catalyst savings and more than 237-fold higher catalyst utilization. The remarkable performance with high catalyst utilization is mainly due to the vertically well-aligned ultrathin nanosheets with good surface coverage exposing abundant active sites for the electrochemical reaction. Overall, this study not only paves a new way for optimizing the catalyst uniformity and surface coverage with ultralow loadings but also provides new insights into nanostructured electrode design and facile fabrication for highly efficient and low-cost PEMECs and other energy storage/conversion devices.
Collapse
Affiliation(s)
- Lei Ding
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Zhiqiang Xie
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Shule Yu
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Weitian Wang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Alexander Y Terekhov
- Center for Laser Applications, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Brian K Canfield
- Center for Laser Applications, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | | | - Alex Keane
- Nel Hydrogen, Wallingford, CT, 06492, USA
| | | | - David A Cullen
- Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, TN, 37831, USA
| | - Feng-Yuan Zhang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA.
| |
Collapse
|
4
|
Ding L, Wang W, Xie Z, Li K, Yu S, Capuano CB, Keane A, Ayers K, Zhang FY. Highly Porous Iridium Thin Electrodes with Low Loading and Improved Reaction Kinetics for Hydrogen Generation in PEM Electrolyzer Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24284-24295. [PMID: 37167124 DOI: 10.1021/acsami.2c23304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Highly efficient electrodes with simplified fabrication and low cost are highly desired for the commercialization of proton exchange membrane electrolyzer cells (PEMECs). Herein, highly porous Ir-coated thin/tunable liquid/gas diffusion layers with honeycomb-structured catalyst layers were fabricated as anode electrodes for PEMECs via integrating a facile and fast electroplating process with efficient template removal. Combined with a Nafion 117 membrane, a low cell voltage of 1.842 V at 2000 mA/cm2 and a high mass activity of 4.16 A/mgIr at 1.7 V were achieved with a low Ir loading of 0.27 mg/cm2, outperforming most of the recently reported anode catalysts. Moreover, the thin electrode shows outstanding stability at a high current density of 1800 mA/cm2 in the practical PEMEC. Moreover, with in-situ high-speed visualizations in PEMECs, the catalyst layer structure's impact on real-time electrochemical reactions and mass transport phenomena was investigated for the first time. Increased active sites and improved multiphase transport properties with favorable bubble detachment and water diffusion for the honeycomb-structured electrode are revealed. Overall, the significantly simplified ionomer-free honeycomb thin electrode with low catalyst loading and remarkable performance could efficiently accelerate the industrial application of PEMECs.
Collapse
Affiliation(s)
- Lei Ding
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Weitian Wang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Zhiqiang Xie
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Kui Li
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Shule Yu
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | | | - Alex Keane
- Nel Hydrogen, Wallingford, Connecticut 06492, United States
| | - Kathy Ayers
- Nel Hydrogen, Wallingford, Connecticut 06492, United States
| | - Feng-Yuan Zhang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| |
Collapse
|
5
|
Hao M, Assresahegn BD, Abdellah A, Miner L, Al Hejami A, Zaker N, Gaudet J, Roué L, Botton GA, Beauchemin D, Higgins DC, Thorpe S, Harrington DA, Guay D. Role of Ir Decoration in Activating a Multiscale Fractal Surface in Porous Ni for the Oxygen Evolution Reaction. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Minghui Hao
- Institut national de la recherche scientifique (INRS), Centre Énergie, Matériaux Télécommunications, Varennes, Quebec J3X 1P7, Canada
| | - Birhanu Desalegn Assresahegn
- Institut national de la recherche scientifique (INRS), Centre Énergie, Matériaux Télécommunications, Varennes, Quebec J3X 1P7, Canada
| | - Ahmed Abdellah
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada
| | - Lukas Miner
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - Ahmed Al Hejami
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - Nafiseh Zaker
- Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Julie Gaudet
- Institut national de la recherche scientifique (INRS), Centre Énergie, Matériaux Télécommunications, Varennes, Quebec J3X 1P7, Canada
| | - Lionel Roué
- Institut national de la recherche scientifique (INRS), Centre Énergie, Matériaux Télécommunications, Varennes, Quebec J3X 1P7, Canada
| | - Gianluigi A. Botton
- Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Diane Beauchemin
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - Drew C. Higgins
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada
| | - Steven Thorpe
- Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E4, Canada
| | - David A. Harrington
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Daniel Guay
- Institut national de la recherche scientifique (INRS), Centre Énergie, Matériaux Télécommunications, Varennes, Quebec J3X 1P7, Canada
| |
Collapse
|
6
|
Lin N, Feng S, Wang J. Multiphysics modelling of proton exchange membrane water electrolysis: from steady to dynamic behavior. AIChE J 2022. [DOI: 10.1002/aic.17742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nan Lin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry, Jilin University Changchun China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry, Jilin University Changchun China
| | - Jianguo Wang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green‐Chemical Synthesis Technology College of Chemical Engineering, Zhejiang University of Technology Hangzhou China
| |
Collapse
|
7
|
Wang W, Li K, Ding L, Yu S, Xie Z, Cullen DA, Yu H, Bender G, Kang Z, Wrubel JA, Ma Z, Capuano CB, Keane A, Ayers K, Zhang FY. Exploring the Impacts of Conditioning on Proton Exchange Membrane Electrolyzers by In Situ Visualization and Electrochemistry Characterization. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9002-9012. [PMID: 35142208 DOI: 10.1021/acsami.1c21849] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
For a proton exchange membrane electrolyzer cell (PEMEC), conditioning is an essential process to enhance its performance, reproducibility, and economic efficiency. To get more insights into conditioning, a PEMEC with Ir-coated gas diffusion electrode (IrGDE) was investigated by electrochemistry and in situ visualization characterization techniques. The changes of polarization curves, electrochemical impedance spectra (EIS), and bubble dynamics before and after conditioning are analyzed. The polarization curves show that the cell efficiency increased by 9.15% at 0.4 A/cm2, and the EIS and Tafel slope results indicate that both the ohmic and activation overpotential losses decrease after conditioning. The visualization of bubble formation unveils that the number of bubble sites increased greatly from 14 to 29 per pore after conditioning, at the same voltage of 1.6 V. Under the same current density of 0.2 A/cm2; the average bubble detachment size decreased obviously from 35 to 25 μm. The electrochemistry and visualization characterization results jointly unveiled the increase of reaction sites and the surface oxidation on the IrGDE during conditioning, which provides more insights into the conditioning and benefits for the future GDE design and optimization.
Collapse
Affiliation(s)
- Weitian Wang
- Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Kui Li
- Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Lei Ding
- Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Shule Yu
- Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Zhiqiang Xie
- Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - David A Cullen
- Center for Nanophase Materials Sciences, Oak Ridge National Lab, Oak Ridge, Tennessee 37831, United States
| | - Haoran Yu
- Center for Nanophase Materials Sciences, Oak Ridge National Lab, Oak Ridge, Tennessee 37831, United States
| | - Guido Bender
- Chemistry & Nanoscience Department, National Renewable Energy Lab, Golden, Colorado 80401, United States
| | - Zhenye Kang
- Chemistry & Nanoscience Department, National Renewable Energy Lab, Golden, Colorado 80401, United States
| | - Jacob A Wrubel
- Chemistry & Nanoscience Department, National Renewable Energy Lab, Golden, Colorado 80401, United States
| | - Zhiwen Ma
- Chemistry & Nanoscience Department, National Renewable Energy Lab, Golden, Colorado 80401, United States
| | | | - Alex Keane
- Nel Hydrogen, 10 Technology Drive, Wallingford, Connecticut 06492, United States
| | - Kathy Ayers
- Nel Hydrogen, 10 Technology Drive, Wallingford, Connecticut 06492, United States
| | - Feng-Yuan Zhang
- Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| |
Collapse
|
8
|
Morphology engineering of iridium electrodes via modifying titanium substrates with controllable pillar structures for highly efficient oxygen evolution reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Li L, Jiang W, Zhang G, Feng D, Zhang C, Yao W, Wang Z. Efficient Mesh Interface Engineering: Insights from Bubble Dynamics in Electrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45346-45354. [PMID: 34521191 DOI: 10.1021/acsami.1c07637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrochemical catalysis offers great potential in energy and mass conversion in academy and industry. However, bubble dynamics and its influence on gas-evolving electrode systems remain ambiguous. Detailed information on the local transport process between different phases and the underlying mechanism are required for the full understanding of two-phase flow evolution and distribution. Here, we construct a three-electrode water splitting reaction system to study the bubble dynamics and system efficiency of titanium electrodes with different morphologies. The dynamics of a gas bubble at an electrode with a plate and 100-mesh, 150-mesh, and 300-mesh structures is systematically investigated with respect to applied voltage conditions. Parameters and underlying mechanisms that influence the two-phase flow evolution and electrochemical reaction performance are carefully discussed. Finally, the underlying dynamic force balance on the gas bubble is analyzed to illustrate the mechanism and experimental observations. Our study provides insights in gas-evolving electrocatalysis and offers opportunities for the design and fabrication of high-performance electrocatalytic reactors.
Collapse
Affiliation(s)
- Long Li
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China
| | - Wenjun Jiang
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China
| | - Guang Zhang
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China
| | - Deqiang Feng
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China
| | - Ce Zhang
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China
| | - Wei Yao
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China
| | - Zhijie Wang
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|