1
|
Jiao L, Zhao M, Zheng Q, Ren Q, Su Z, Li M, Li F. Zeolitic imidazolate framework-67-derived chalcogenides as electrode materials for supercapacitors. Dalton Trans 2025. [PMID: 40354095 DOI: 10.1039/d4dt02957g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
With the rapid development of new energy technologies, hybrid supercapacitors have received widespread attention owing to their advantages of high power density, fast charging/discharging rate and long cycle life. In this case, the selection and design of electrode materials are the key to improving the energy storage performance of supercapacitors. Herein, zeolitic imidazolate framework-67 (ZIF-67) is presented as a good candidate material for the fabrication of supercapacitor electrodes because of its controllable pore size, constant cavity size and large specific area. Moreover, pristine ZIF-67 and ZIF-67-derived porous carbon have shown exemplary performances in supercapacitors. However, they belong to the class of electric double layer capacitor materials and have a lower magnitude of energy storage compared with pseudocapacitor materials. Therefore, to improve the energy density of hybrid supercapacitors, other ZIF-67 derivatives need to be explored, especially chalcogenides. This review mainly reports the application of ZIF-67-derived transition metal chalcogenides (TMCs, C including Oxide, Sulfide, Selenide, Telluride) in supercapacitors. Moreover, the strategies for the preparation of ZIF-67-derived TMCs and their electrochemical performance in supercapacitors are further discussed. Finally, the remaining challenges and future perspectives are highlighted.
Collapse
Affiliation(s)
- Lidong Jiao
- School of Physics, Key Laboratory of Shaanxi for Advanced Functional Materials and Mesoscopic Physics, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| | - Mingshu Zhao
- School of Physics, Key Laboratory of Shaanxi for Advanced Functional Materials and Mesoscopic Physics, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| | | | - Qingyi Ren
- School of Physics, Key Laboratory of Shaanxi for Advanced Functional Materials and Mesoscopic Physics, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| | - Zhou Su
- School of Physics, Key Laboratory of Shaanxi for Advanced Functional Materials and Mesoscopic Physics, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| | - Min Li
- School of Physics, Key Laboratory of Shaanxi for Advanced Functional Materials and Mesoscopic Physics, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| | - Feng Li
- School of Physics, Key Laboratory of Shaanxi for Advanced Functional Materials and Mesoscopic Physics, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| |
Collapse
|
2
|
Ahmad S, Tariq M, Rehman ZU, Yao S, Zhu B, Ni H, Samiuddin M, Khan KA, Zaki MEA. A tremella-like in situ synthesis of ZIF-67Co(OH)F@Co 3O 4 on carbon cloth as an electrode material for supercapacitors. RSC Adv 2024; 14:27831-27842. [PMID: 39234527 PMCID: PMC11372565 DOI: 10.1039/d4ra04250f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024] Open
Abstract
In this study, a simple in situ technique followed by hydrothermal method is used to synthesize a novel tremella-like structure of ZIF-67Co(OH)F@Co3O4/CC metal-organic framework (MOF) derived from zeolite imidazole. The in situ synthesis of metal-organic frameworks (MOFs) increases their conductivity and produces more active sites for ion insertion. Their unique, scalable design not only provides more space to accommodate volume change but also facilitates electrolyte penetration into the electrode resulting in more active materials being utilized and ion-electron transfer occurring faster during the cycle. As a result, the binder-free ZIF-67Co(OH)F@Co3O4/CC supercapacitor electrode exhibits typical pseudo-capacitance behaviour, with a specific capacitance of 442 F g-1 and excellent long-term cycling stability of 90% after 5000 cycles at 10 A g-1.
Collapse
Affiliation(s)
- Shakeel Ahmad
- School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 PR China
| | - Muhammad Tariq
- School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 PR China
| | - Zia Ur Rehman
- Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu University Zhenjiang 212013 P. R. China
| | - Shanshan Yao
- Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu University Zhenjiang 212013 P. R. China
| | - Bing Zhu
- School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 PR China
| | - Henmei Ni
- School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 PR China
| | - Muhammad Samiuddin
- Metallurgical Engineering Department, NED University of Engineering and Technology Karachi 75850 Pakistan
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products (CBRP), Unit of Bee Research and Honey Production, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University Riyadh 11623 Saudi Arabia
| |
Collapse
|
3
|
Dai L, Yang M, Jiang S, Tang H, Ren E, Xiao H, Liu L, Guo R. N-doped lignin-based activated carbon aerogel derived from bamboo black pulp liquor for efficient removal of malachite green in wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51325-51343. [PMID: 39107641 DOI: 10.1007/s11356-024-34564-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/25/2024] [Indexed: 09/06/2024]
Abstract
In this study, a lignin-based aerogel (LA) was prepared through acid precipitation of BPBL, followed by sol-gel method and freeze-drying. Additionally, a one-step activation-carbonization method was used to acquire nitrogen-doped lignin-based activated carbon aerogel (NLACA). The adsorption and catalytic degradation performance for malachite green (MG) were examined. The specific surface area of NLACA after N-doping was 2644.5 m2/g. The adsorption capacity for MG was increased to 3433 mg/g with the presence of nitrogenous functional groups on surface of NLACA compared without N-doping. Meanwhile, non-radical singlet oxygen is the primary active substance and degradation efficiency arrives at 91.8% after the catalytic degradation within 20 min and it has good stability and reuse. Three possible degradation pathways during degradation were analyzed by LC-MS technique. The adsorption isotherm and kinetic data demonstrated conformity with both the Langmuir model and the pseudo-second-order kinetic model. The primary mechanisms of the adsorption for MG dyes on NLACA include hydrogen bonding, π-π interactions, attraction of electrostatic and pore filling. Hence, NLACA derived from BPBL acts as a cost-effective and high-performance adsorbent and catalyst for removal of MG in dye wastewater. This concept introduces an innovative approach of "treatment of waste with waste" for developing a low-consumption, high-efficiency dye wastewater treatment and provides significant reference to treatment dye wastewater.
Collapse
Affiliation(s)
- Lanling Dai
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Mengyuan Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Shan Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Hong Tang
- Graduate School of Energy Science, Kyoto University, Kyoto, Japan
| | - Erhui Ren
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Hongyan Xiao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Li Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Ronghui Guo
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.
- Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou, 215123, China.
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, NanChang, China.
| |
Collapse
|
4
|
Mir RA, Hoseini AHA, Hansen EJ, Tao L, Zhang Y, Liu J. Molybdenum Sulfide Nanoflowers as Electrodes for Efficient and Scalable Lithium-Ion Capacitors. Chemistry 2024; 30:e202400907. [PMID: 38649319 DOI: 10.1002/chem.202400907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Hybrid supercapacitors (HSCs) bridge the unique advantages of batteries and capacitors and are considered promising energy storage devices for hybrid vehicles and other electronic gadgets. Lithium-ion capacitors (LICs) have attained particular interest due to their higher energy and power density than traditional supercapacitor devices. The limited voltage window and the deterioration of anode materials upsurged the demand for efficient and stable electrode materials. Two-dimensional (2D) molybdenum sulfide (MoS2) is a promising candidate for developing efficient and durable LICs due to its wide lithiation potential and unique layer structure, enhancing charge storage efficiency. Modifying the extrinsic features, such as the dimensions and shape at the nanoscale, serves as a potential path to overcome the sluggish kinetics observed in the LICs. Herein, the MoS2 nanoflowers have been synthesized through a hydrothermal route. The developed LIC exhibited a specific capacitance of 202.4 F g-1 at 0.25 A g-1 and capacitance retention of >90 % over 5,000 cycles. Using an ether electrolyte improved the voltage window (2.0 V) and enhanced the stability performance. The ex-situ material characterization after the stability test reveals that the storage mechanism in MoS2-LICs is not diffusion-controlled. Instead, the fast surface redox reactions, especially intercalation/deintercalation of ions, are more prominent for charge storage.
Collapse
Affiliation(s)
- Rameez Ahmad Mir
- School of Engineering, Faculty of Applied Science, The University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada
| | - Amir Hosein Ahmadian Hoseini
- School of Engineering, Faculty of Applied Science, The University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada
| | - Evan J Hansen
- School of Engineering, Faculty of Applied Science, The University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada
| | - Li Tao
- School of Engineering, Faculty of Applied Science, The University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada
| | - Yue Zhang
- School of Engineering, Faculty of Applied Science, The University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada
| | - Jian Liu
- School of Engineering, Faculty of Applied Science, The University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
5
|
Guo Y, Zhao S, Tang X, Yi H. Research progress on metal-organic framework compounds (MOFs) in electrocatalysis. J Environ Sci (China) 2024; 141:261-276. [PMID: 38408827 DOI: 10.1016/j.jes.2023.06.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 02/28/2024]
Abstract
Metal-organic frameworks (MOFs) have favorable characteristics such as large specific surface area, high porosity, structural diversity, and pore surface modification, giving them great potential for development and attractive prospects in the research area of modern materials electrocatalysis. However, unsatisfactory catalytic activity and poor electronic conductivity are the main challenges facing MOFs. This review focuses on MOF-based materials used in electrocatalysis, based on the types of catalytic reactions that have used MOF-based materials in recent years along with their applications, and also looks at some new electrocatalytic materials and their future development prospects.
Collapse
Affiliation(s)
- Yutong Guo
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shunzheng Zhao
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Xiaolong Tang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| | - Honghong Yi
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| |
Collapse
|
6
|
de Lima AFV, Lourenço ADA, Silva VD, Menezes de Oliveira AL, Rostas AM, Barbu-Tudoran L, Leostean C, Pana O, da Silva RB, Macedo DA, da Silva FF. Co 3O 4/activated carbon nanocomposites as electrocatalysts for the oxygen evolution reaction. Dalton Trans 2024; 53:8563-8575. [PMID: 38682235 DOI: 10.1039/d3dt03720g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The Oxygen Evolution Reaction (OER) is crucial in various processes such as hydrogen production via water splitting. Several electrocatalysts, including metal oxides, have been evaluated to enhance the reaction efficiency. Zeolitic Imidazolate Framework-67 (ZIF-67) has been employed as a precursor to produce Co3O4, showing high OER activity. Additionally, the formation of composites with carbon-based materials improves the activity of these materials. Thus, this work focuses on synthesizing ZIF-67 and commercial activated carbon (AC) composites, which were used as precursors to obtain Co3O4/C electrocatalysts by calculating ZIF-67/CX (X = 10, 30, and 50, the mass percentage of AC). The obtained materials were thoroughly characterized by employing X-ray powder diffraction (XRD), confirming the cobalt oxide structure with a sphere-like morphology as observed in the TEM images. The presence of oxygen vacancies was confirmed by infrared spectroscopy and EPR measurements. The electrocatalytic performance in the OER was investigated by linear sweep voltammetry (LSV), which revealed an overpotential of 325 mV at 10 mA cm-2 and a Tafel slope value of 65.32 mV dec-1 for Co3O4/C10, superior in activity to several previously reported studies in the literature and electrochemical stability of up to 8 hours. The reduced value of charge transfer resistance, high double-layer capacitance, and the presence of Co3+ ions justify the superior performance of the Co3O4/C10 electrocatalyst.
Collapse
Affiliation(s)
- Andrei F V de Lima
- Departamento de Química, Universidade Federal da Paraíba, 58051-900, João Pessoa-PB, Brazil.
| | - Annaíres de A Lourenço
- Departamento de Química, Universidade Federal da Paraíba, 58051-900, João Pessoa-PB, Brazil.
| | - Vinícius D Silva
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais - PPCEM, Universidade Federal da Paraíba, 58051-900, João Pessoa-PB, Brazil
| | - André L Menezes de Oliveira
- Núcleo de Pesquisa e Extensão LACOM, Departamento de Química, Universidade Federal da Paraíba, 52051-85, João Pessoa-PB, Brazil
| | - Arpad M Rostas
- Department of Physics of Nanostructure Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Lucian Barbu-Tudoran
- Department of Physics of Nanostructure Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Cristian Leostean
- Department of Physics of Nanostructure Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Ovidiu Pana
- Department of Physics of Nanostructure Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Rodolfo B da Silva
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais - PPCEM, Universidade Federal da Paraíba, 58051-900, João Pessoa-PB, Brazil
| | - Daniel A Macedo
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais - PPCEM, Universidade Federal da Paraíba, 58051-900, João Pessoa-PB, Brazil
| | - Fausthon F da Silva
- Departamento de Química, Universidade Federal da Paraíba, 58051-900, João Pessoa-PB, Brazil.
| |
Collapse
|
7
|
Shrivastav V, Mansi, Dubey P, Shrivastav V, Kaur A, Hołdyński M, Krawczyńska A, Tiwari UK, Deep A, Nogala W, Sundriyal S. Diffusion controlled electrochemical analysis of MoS 2 and MOF derived metal oxide-carbon hybrids for high performance supercapacitors. Sci Rep 2023; 13:20675. [PMID: 38001163 PMCID: PMC10674017 DOI: 10.1038/s41598-023-47730-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
In the context of emerging electric devices, the demand for advanced energy storage materials has intensified. These materials must encompass both surface and diffusion-driven charge storage mechanisms. While diffusion-driven reactions offer high capacitance by utilizing the bulk of the material, their effectiveness diminishes at higher discharge rates. Conversely, surface-controlled reactions provide rapid charge/discharge rates and high power density. To strike a balance between these attributes, we devised a tri-composite material, TiO2/Carbon/MoS2 (T10/MoS2). This innovative design features a highly porous carbon core for efficient diffusion and redox-active MoS2 nanosheets on the surface. Leveraging these characteristics, the T10/MoS2 composite exhibited impressive specific capacitance (436 F/g at 5 mV/s), with a significant contribution from the diffusion-controlled process (82%). Furthermore, our symmetrical device achieved a notable energy density of ~ 50 Wh/kg at a power density of 1.3 kW/kg. This concept holds promise for extending the approach to other Metal-Organic Framework (MOF) structures, enabling enhanced diffusion-controlled processes in energy storage applications.
Collapse
Affiliation(s)
- Vishal Shrivastav
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Mansi
- CSIR-Central Scientific Instruments Organisation, Sector 30-C, Chandigarh, 160030, India
| | - Prashant Dubey
- Advanced Carbon Products and Metrology Department, CSIR-National Physical Laboratory (CSIR-NPL), New Delhi, 110012, India
| | | | - Ashwinder Kaur
- Department of Physics, Punjabi University, Patiala, 147002, India
| | - Marcin Hołdyński
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Agnieszka Krawczyńska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141 Str, 02-507, Warsaw, Poland
| | - Umesh K Tiwari
- CSIR-Central Scientific Instruments Organisation, Sector 30-C, Chandigarh, 160030, India
| | - Akash Deep
- Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India
| | - Wojciech Nogala
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Shashank Sundriyal
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00, Olomouc, Czech Republic.
| |
Collapse
|
8
|
Yuan J, Li Y, Lu G, Gao Z, Wei F, Qi J, Sui Y, Yan Q, Wang S. Controlled Synthesis of Flower-like Hierarchical NiCo-Layered Double Hydroxide Integrated with Metal-Organic Framework-Derived Co@C for Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37486015 DOI: 10.1021/acsami.3c05061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Layered double hydroxides (LDHs) have come to the foreground recently, considering their unique layered structure and short ion channels when they act as electrode materials for supercapacitors (SCs). However, due to their poor rate and cycle performance, they are not highly sought after in the market. Therefore, a flower-like hierarchical NiCo-LDH@C nanostructure with flake NiCo-LDH anchored on the carbon skeleton has emerged here, which is constructed by calcination and hydrothermal reaction and applying flake ZIF-67 as a precursor. In this structure, NiCo-LDH grows outward with abundant and homogeneously distributed Co nanoparticles on Co@C as nucleation sites, forming a hierarchical structure that is combined tightly with the carbon skeleton. The flower-like hierarchical nanostructures formed by the composite of metal-organic frameworks (MOFs) and LDHs have successfully enhanced the cycle and rate performance of LDH materials on the strength of strong structural stability, large specific surface area, and unique cooperative effect. The NiCo-LDH@C electrode displays superb electrochemical performance, with a specific capacitance of 2210.6 F g-1 at 1 A g-1 and 88.8% capacitance retention at 10 A g-1. Furthermore, the asymmetric supercapacitor (ASC) constructed with NiCo-LDH@C//RGO reveals a remarkable energy density of 45.02 W h kg-1 with a power density of 799.96 W kg-1. This project aims to propose a novel avenue to exploit NiCo-LDH electrode materials and provide theory and methodological guidance for deriving complex structures from MOF derivatives.
Collapse
Affiliation(s)
- Junzhuo Yuan
- School of Materials and Physics, China University of Mining & Technology, Xuzhou 221116, P. R. China
| | - Yingxin Li
- School of Materials and Physics, China University of Mining & Technology, Xuzhou 221116, P. R. China
| | - Guoge Lu
- School of Materials and Physics, China University of Mining & Technology, Xuzhou 221116, P. R. China
| | - Zhan Gao
- School of Materials and Physics, China University of Mining & Technology, Xuzhou 221116, P. R. China
| | - Fuxiang Wei
- School of Materials and Physics, China University of Mining & Technology, Xuzhou 221116, P. R. China
- The Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology & Equipments, China University of Mining & Technology, Xuzhou 221116, P. R. China
| | - Jiqiu Qi
- School of Materials and Physics, China University of Mining & Technology, Xuzhou 221116, P. R. China
- The Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology & Equipments, China University of Mining & Technology, Xuzhou 221116, P. R. China
| | - Yanwei Sui
- School of Materials and Physics, China University of Mining & Technology, Xuzhou 221116, P. R. China
- The Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology & Equipments, China University of Mining & Technology, Xuzhou 221116, P. R. China
| | - Qingqing Yan
- Jiangsu Huaihai New Energy Co., Ltd, Xuzhou 221116, P. R. China
| | - Song Wang
- Jiangsu Huaihai New Energy Co., Ltd, Xuzhou 221116, P. R. China
| |
Collapse
|
9
|
Anwar MI, Asad M, Ma L, Zhang W, Abbas A, Khan MY, Zeeshan M, Khatoon A, Gao R, Manzoor S, Naeem Ashiq M, Hussain S, Shahid M, Yang G. Nitrogenous MOFs and their composites as high-performance electrode material for supercapacitors: Recent advances and perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Wang H, Li W, Liu D, Liu G, An X, Liu J, Zhou C, Zhang H, Wang G. Application of Co3O4/Nitrogen-doped carbon composite electrode material derived form Zeolitic imidazolate frameworks-67 in supercapacitors. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Khadka A, Samuel E, Il Kim Y, Park C, Lee HS, Yoon SS. Hierarchical ZIF-67 of dodecahedral structure on binder-free carbon nanofiber for flexible supercapacitors. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Prabu S, Vinu M, Chiang KY. Ultrafine Ru nanoparticles in shape control hollow octahedron MOF derived cobalt oxide@carbon as high-efficiency catalysts for hydrolysis of ammonia borane. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Wu YF, Cao YC, Lee PY, Kubendhiran S, Chung RJ, Yougbaré S, Lin LY. Improving energy storage ability of ammonium-decorated cobalt fluoride using selenization as efficient active material of supercapacitor. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Wu CH, Wu YF, Lee PY, Yougbaré S, Lin LY. Ligand Incorporating Sequence-dependent ZIF67 Derivatives as Active Material of Supercapacitor: Competition between Ammonia Fluoride and 2-Methylimidazole. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43180-43194. [PMID: 36103342 DOI: 10.1021/acsami.2c09787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The zeolitic imidazolate framework 67 (ZIF67) derivative is a potential active material of supercapacitors (SC), owing to high specific surface area and porosity and possible formation of cobalt compounds. A novel ZIF67 derivative is synthesized using a one-step solution process with cobalt precursor 2-methylimidazole (2-Melm) and ammonia fluoride in our previous work. Due to its facile synthesis and excellent electrocapacitive behavior, it is crucial to understand the competition between ammonia fluoride and 2-Melm on forming derivatives with cobalt ions and to create more efficient ZIF67 derivatives for charge storage. In this work, several ZIF67 derivatives are designed using a one-step solution process with 2-Melm and ammonia fluoride incorporated in different sequences. The reaction durations for a single ligand and two ligands are controlled. The largest capacity of 176.33 mAh/g corresponding to the specific capacitance of 1057.99 F/g is achieved for the ZIF67 derivative electrode prepared by reacting ammonia fluoride and a cobalt precursor for 0.5 h and then incorporating 2-Melm for another 23.5 h of reaction (NM0.5). This derivative composed of highly conductive CoF2, NiF2, Co(OH)F, and Ni(OH)F presents high specific surface area and porosity. The relevant SC presents a maximum energy density of 19.5 Wh/kg at 430 W/kg, a capacity retention of 92%, and Coulombic efficiency of 96% in 10000 cycles.
Collapse
Affiliation(s)
- Chung-Hsien Wu
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Yung-Fu Wu
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Pin-Yan Lee
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Sibidou Yougbaré
- Institut de Recherche en Sciences de la Santé (IRSS-DRCO)/Nanoro, 03 BP 7192, Ouagadougou 03, Burkina Faso
| | - Lu-Yin Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| |
Collapse
|
15
|
Lee PY, Lin LY, Yougbaré S. Sulfurization of nickel–cobalt fluoride decorating ammonia ions as efficient active material of supercapacitor. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Chen TY, Kuo TR, Yougbaré S, Lin LY, Xiao CY. Novel direct growth of ZIF-67 derived Co 3O 4 and N-doped carbon composites on carbon cloth as supercapacitor electrodes. J Colloid Interface Sci 2022; 608:493-503. [PMID: 34626991 DOI: 10.1016/j.jcis.2021.09.198] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022]
Abstract
Zeolitic imidazolate framework-67 (ZIF67) derivatives are considered as promising active materials for energy storage owing to the possible formation of cobalt oxide and N-doped graphite. Cobalt oxide has multiple redox states for generating redox reactions for charge storage, while N-doped graphite can provide high electrical conductivity for charge transfer. In this study, it is the first time to synthesize binder-free electrodes composed of cobalt oxide and N-doped graphite derived from ZIF67 on carbon cloth (CC) for supercapacitor (SC). Successive oxidation and carbonization along with additional coverage of ZIF67 derivatives are applied to synthesize ZIF67 derivatives composed of cobalt oxide, N-doped graphite and cobalt oxide/N-doped graphite composites with different layer compositions. The highest specific capacitance (CF) of 90.0F/g at 20 mV/s is obtained for the oxidized ZIF67/carbonized ZIF67/carbon cloth (O67/C67/CC) electrode, due to the large surface area and high electrical conductivity benefitted from preferable morphology and growing sequence of Co3O4 and N-doped graphite. The symmetric SC composed of O67/C67/CC electrodes shows the maximum energy density of 2.53 Wh/kg at the power density of 50 W/kg. Cycling stability with CF retention of 70% and Coulombic efficiency of 65% after 6000 times repeatedly charge/discharge process is also obtained for this symmetric SC.
Collapse
Affiliation(s)
- Tzu-Yang Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Tsung-Rong Kuo
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
| | - Sibidou Yougbaré
- Institut de Recherche en Sciences de la Santé (IRSS-DRCO)/Nanoro, 03 B.P 7192, Ouagadougou 03, Burkina Faso
| | - Lu-Yin Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan.
| | - Cheng-Yu Xiao
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| |
Collapse
|
17
|
Synthesis of ZIF-67 derived Co-based catalytic membrane for highly efficient reduction of p-nitrophenol. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Pyrolysis-derived materials of Mn-doped ZIF-67 for the electrochemical detection of o-nitrophenol. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
19
|
Hu K, Li J, Han Y, Ng DHL, Xing N, Lyu Y. A colorimetric detection strategy and micromotor-assisted photo-Fenton like degradation for hydroquinone based on the peroxidase-like activity of Co 3O 4–CeO 2 nanocages. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01192a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Co3O4–CeO2 micromotors were fabricated and the colorimetric detection and micromotor-assisted photodegradation capability were studied.
Collapse
Affiliation(s)
- Kaiyuan Hu
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Jia Li
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Yang Han
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Dickon H. L. Ng
- School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| | - Ningning Xing
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Yangsai Lyu
- Department of Mathematics and Statistics, Queen's University, Canada
| |
Collapse
|
20
|
Yang CH, Hsiao YC, Lin LY. Novel In Situ Synthesis of Freestanding Carbonized ZIF67/Polymer Nanofiber Electrodes for Supercapacitors via Electrospinning and Pyrolysis Techniques. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41637-41648. [PMID: 34448562 DOI: 10.1021/acsami.1c10985] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Zeolitic imidazolate framework-67 (ZIF67) has been regarded as an effective energy storage material due to its high surface area and electroactive cobalt center. Carbonizing ZIF67 can enhance electrical conductivity by converting 2-methylimidazole (2-melm) to carbon with cobalt doping. In this work, a novel in situ electrospinning is proposed to fabricate carbonized ZIF67 on carbon fiber (C67@PAN-OC) as a freestanding supercapacitor electrode. Polyacrylonitrile solution containing a cobalt precursor is used for electrospinning, and produced fibers are immersed in 2-melm to form ZIF67. Individually grown carbonized ZIF67 on carbon fiber is obtained using the in situ electrospinning method, while the one-body mixed carbon electrode is formed using the ex situ electrospinning method. A highest specific capacitance (CF) of 386.3 F/g at 20 mV/s is obtained for the in situ synthesized C67@PAN-OC electrode due to the largest electrochemical surface area and the smallest resistance, while the ex situ synthesized electrode only shows a CF value of 27.7 F/g. A symmetric supercapacitor (SSC) assembled using the optimized C67@PAN-OC electrodes and gel electrolytes shows a maximum energy density of 9.64 kWh/kg at 0.55 kW/kg and a CF retention of 59.5% after 1000 times charge/discharge process. A CF retention of 75.6% after bending 100 times is also obtained for SSC.
Collapse
Affiliation(s)
- Ching-Hua Yang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106344, Taiwan
- Research Center of Energy Conservation for New Generation of Residential, Commercial, and Industrial Sectors, Taipei 106344, Taiwan
| | - Yu-Cheng Hsiao
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Stanford Byers Center for Biodesign, Stanford University, Stanford, California 94305-5428, United States
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Lu-Yin Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106344, Taiwan
- Research Center of Energy Conservation for New Generation of Residential, Commercial, and Industrial Sectors, Taipei 106344, Taiwan
| |
Collapse
|