1
|
Mattioli IA, Castro KR, Sedenho GC, Macedo LJA, Oliveira MN, Manuli ER, Sabino EC, Crespilho FN. Expanding the application of graphene vertical devices to dual femtomolar detection of SARS-CoV-2 receptor binding domain in serum and saliva. Biosens Bioelectron 2023; 239:115614. [PMID: 37607446 DOI: 10.1016/j.bios.2023.115614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/24/2023]
Abstract
The emergence of the graphene-based hybrid electrical-electrochemical vertical device (EEVD) has introduced a promising nanostructured biosensor tailored for point-of-care applications. In this study, we present an innovative EEVD capable of simultaneously detecting the receptor binding domain (RBD) of the SARS-CoV-2 spike protein in both serum and saliva. The foundation of the EEVD lies in a poly-neutral red-graphene heterojunction, which has been enhanced with a bioconjugate of gold nanoparticles and antibodies. The biodevice demonstrates a remarkable limit of detection, registering at the femtomolar scale (2.86 fmol L-1 or 0.1 pg mL-1). Its sensitivity is characterized by a 6.1 mV/decade response, and its operational range spans 10-12 to 10-7 g mL-1 in both serum and saliva samples. With a 20.0 μL of biological samples and a rapid processing time of under 10 min, the EEVD achieves the feat of dual antigen detection. The tests achieved 100.0% specificity, accuracy, and sensitivity in saliva, and 100.0% specificity, 88.9% accuracy, and 80.0% sensitivity in serum. This study highlights the EEVD as a low-cost solution of rapid viral detection during the crucial initial phases of COVID-19 infections.
Collapse
Affiliation(s)
- Isabela A Mattioli
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Karla R Castro
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Graziela C Sedenho
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Lucyano J A Macedo
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Mona N Oliveira
- Biolinker Synthetic Biology EIRELI, Cotia, SP, 06715-862, Brazil
| | - Erika R Manuli
- Institute of Tropical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, SP, 05403-000, Brazil; LIM-46 HC-FMUSP - Laboratory of Medical Investigation, Clinical Hospital, Faculty of Medicine, University of São Paulo, São Paulo, SP, 01246903, Brazil
| | - Ester C Sabino
- Institute of Tropical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, SP, 05403-000, Brazil; LIM-46 HC-FMUSP - Laboratory of Medical Investigation, Clinical Hospital, Faculty of Medicine, University of São Paulo, São Paulo, SP, 01246903, Brazil
| | - Frank N Crespilho
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, 13560-970, Brazil.
| |
Collapse
|
2
|
Castro KPR, Colombo RNP, Iost RM, da Silva BGR, Crespilho FN. Low-dimensionality carbon-based biosensors: the new era of emerging technologies in bioanalytical chemistry. Anal Bioanal Chem 2023:10.1007/s00216-023-04578-x. [PMID: 36757464 PMCID: PMC9909134 DOI: 10.1007/s00216-023-04578-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023]
Abstract
Since the last decade, carbon nanomaterials have had a notable impact on different fields such as bioimaging, drug delivery, artificial tissue engineering, and biosensors. This is due to their good compatibility toward a wide range of chemical to biological molecules, low toxicity, and tunable properties. Especially for biosensor technology, the characteristic features of each dimensionality of carbon-based materials may influence the performance and viability of their use. Surface area, porous network, hybridization, functionalization, synthesis route, the combination of dimensionalities, purity levels, and the mechanisms underlying carbon nanomaterial interactions influence their applications in bioanalytical chemistry. Efforts are being made to fully understand how nanomaterials can influence biological interactions, to develop commercially viable biosensors, and to gain knowledge on the biomolecular processes associated with carbon. Here, we present a comprehensive review highlighting the characteristic features of the dimensionality of carbon-based materials in biosensing.
Collapse
Affiliation(s)
- Karla P. R. Castro
- grid.11899.380000 0004 1937 0722São Carlos Institute of Chemistry, University of São Paulo, Av. Trabalhador São Carlense, 400 Parque Arnold Schimidt, São Carlos, SP 13566-590 Brazil
| | - Rafael N. P. Colombo
- grid.11899.380000 0004 1937 0722São Carlos Institute of Chemistry, University of São Paulo, Av. Trabalhador São Carlense, 400 Parque Arnold Schimidt, São Carlos, SP 13566-590 Brazil
| | - Rodrigo M. Iost
- grid.11899.380000 0004 1937 0722São Carlos Institute of Chemistry, University of São Paulo, Av. Trabalhador São Carlense, 400 Parque Arnold Schimidt, São Carlos, SP 13566-590 Brazil
| | - Beatriz G. R. da Silva
- grid.11899.380000 0004 1937 0722São Carlos Institute of Chemistry, University of São Paulo, Av. Trabalhador São Carlense, 400 Parque Arnold Schimidt, São Carlos, SP 13566-590 Brazil
| | - Frank N. Crespilho
- grid.11899.380000 0004 1937 0722São Carlos Institute of Chemistry, University of São Paulo, Av. Trabalhador São Carlense, 400 Parque Arnold Schimidt, São Carlos, SP 13566-590 Brazil
| |
Collapse
|
3
|
Mattioli IA, Castro KR, Macedo LJA, Sedenho GC, Oliveira MN, Todeschini I, Vitale PM, Ferreira SC, Manuli ER, Pereira GM, Sabino EC, Crespilho FN. Graphene-based hybrid electrical-electrochemical point-of-care device for serologic COVID-19 diagnosis. Biosens Bioelectron 2022; 199:113866. [PMID: 34915214 PMCID: PMC8648586 DOI: 10.1016/j.bios.2021.113866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/27/2021] [Accepted: 12/03/2021] [Indexed: 02/08/2023]
Abstract
The outbreak of COVID-19 pandemics highlighted the need of sensitive, selective, and easy-to-handle biosensing devices. In the contemporary scenario, point-of-care devices for mass testing and infection mapping within a population have proven themselves as of primordial importance. Here, we introduce a graphene-based Electrical-Electrochemical Vertical Device (EEVD) point-of-care biosensor, strategically engineered for serologic COVID-19 diagnosis. EEVD uses serologic IgG quantifications on SARS-CoV-2 Receptor Binding Domain (RBD) bioconjugate immobilized onto device surface. EEVD combines graphene basal plane with high charge carrier mobility, high conductivity, low intrinsic resistance, and interfacial sensitivity to capacitance alterations. EEVD application was carried out in real human serum samples. Since EEVD is a miniaturized device, it requires just 40 μL of sample for a point-of-care COVID-19 infections detection. When compared to serologic assays such ELISA and other immunochromatographic methods, EEVD presents some advantages such as time of analyses (15 min), sample preparation, and a LOD of 1.0 pg mL-1. We glimpse that EEVD meets the principles of robustness and accuracy, desirable analytic parameters for assays destined to pandemics control strategies.
Collapse
Affiliation(s)
- Isabela A Mattioli
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Karla R Castro
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Lucyano J A Macedo
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Graziela C Sedenho
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Mona N Oliveira
- Biolinker Synthetic Biology EIRELI, São Paulo, 05508-000, Brazil
| | - Iris Todeschini
- Biolinker Synthetic Biology EIRELI, São Paulo, 05508-000, Brazil
| | - Phelipe M Vitale
- Biolinker Synthetic Biology EIRELI, São Paulo, 05508-000, Brazil
| | - Suzete Cleusa Ferreira
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology, Clinical Hospital HCFMUSP, Faculty of Medicine, University of São Paulo, São Paulo, 01246903, Brazil; Division of Research and Transfusion Medicine, São Paulo Hemocentre Pro-Blood Foundation, São Paulo, 05403000, Brazil
| | - Erika R Manuli
- Institute of Tropical Medicine, Faculty of Medicine, University of São Paulo, 05403-000, Brazil; LIM-46 HC-FMUSP - Laboratory of Medical Investigation, Clinical Hospital, Faculty of Medicine, University of São Paulo, 01246903, Brazil
| | - Geovana M Pereira
- Institute of Tropical Medicine, Faculty of Medicine, University of São Paulo, 05403-000, Brazil
| | - Ester C Sabino
- Institute of Tropical Medicine, Faculty of Medicine, University of São Paulo, 05403-000, Brazil; LIM-46 HC-FMUSP - Laboratory of Medical Investigation, Clinical Hospital, Faculty of Medicine, University of São Paulo, 01246903, Brazil
| | - Frank N Crespilho
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, 13560-970, Brazil.
| |
Collapse
|
4
|
Spalenza P, de Souza FAL, Amorim RG, Scopel WL. Gas sensing detection in carbon phosphide monolayer: Improving CO x sensitivity through B-doping. Phys Chem Chem Phys 2022; 24:22067-22072. [DOI: 10.1039/d2cp02603a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 2D materials engineering challenge is searching for a nanodevice capable to detect and distinguish gas molecules through electrical identification. Herein, the B-doped carbon phosphide monolayer (B-doped γ-CP) was explored...
Collapse
|