1
|
Zheng G, Xu M, Zhou J, Zhang Q, Mao L, Liu Z, Song M. Study on Energy Storage of ZnCo 2S x Based on Sulfur Vacancy Modulation of Ion Transport Rate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 40388801 DOI: 10.1021/acs.langmuir.5c00714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Nowadays, high-rate, high-cycle anode materials for lithium batteries are a research hotspot, and defect engineering for electronic structure modulation is expected to be an effective strategy to improve electrochemical performance. In this paper, we controlled the concentration of ZnCo2S4 sulfur vacancies by regulating the hydrothermal time and performed density functional theory (DFT) calculations on ZnCo2S3.125 with vacancies. The results showed that ZnCo2S3.125 exhibited metallic properties, and the vacancies helped to accelerate the diffusion of carriers and improve the storage capacity. The discharge capacity of ZCS-6 initially reached 2,503.2 mAhg-1 in the first cycle, then maintained at 1,529.8 mAhg-1 after 200 cycles. The excellent cycling performance was attributed to the vacancies that enhanced the carrier transport and adsorption capacity of ZnCo2Sx. Notably, the sulfur vacancy-based surface defect strategy in this study had a greater impact on the electrochemical performance than the morphology optimization strategy.
Collapse
Affiliation(s)
- Guoxu Zheng
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, P.R. China
| | - Minqiang Xu
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, P.R. China
| | - JinJing Zhou
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, P.R. China
| | - Qian Zhang
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, P.R. China
| | - Liwei Mao
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, P.R. China
| | - Zhiwei Liu
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, P.R. China
| | - Mingxin Song
- College of Applied Science and Technology, Hainan University, Haikou 570228, P.R. China
| |
Collapse
|
2
|
Chen G, Zhang X, Gu Y, Jian J, Zhang Q, Wang Q, Zheng D, Xia L, Wang J, Miao H, Yuan J. Efficiently Re-Utilizing the High-Value Metals in the Spent LiNi 1-x-yMn xCo yO 2 for the Trifunctional Electrocatalysts by a Novel One-Pot Method. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411337. [PMID: 39821456 DOI: 10.1002/smll.202411337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/09/2025] [Indexed: 01/19/2025]
Abstract
Traditional hydrometallurgy methods for recycling the spent lithium-ion battery materials face some challenges, including the complex processes, and difficulties in separating Ni/Co/Mn. To address these issues, this work proposes a simple one-pot method to achieve a high Li leaching efficiency (99.2%) and simultaneously transform the majority of Ni (99.5%) and Co (99.9%) into a high-performance multifunctional electrocatalyst (LNMCO-HS-180). LNMCO-HS-180 with single-phase structure shows a hollow microsphere morphology. LNMCO-HS-180 can efficiently catalyze the oxygen reduction (ORR), oxygen evolution (OER), and methanol oxidation reactions (MOR), with the ORR half-wave potential of 0.732 V and, OER potential of 1.469 V at 10 mA cm-2. This is mainly attributed to the unique hollow microsphere morphology, suitable Ni/Co/Mn oxidation states, and reduction in the free energy barriers for OER and ORR. Additionally, LNMCO-HS-180 exhibits an MOR potential of only 1.43 V at 100 mA cm-2 and excellent formate selectivity (>99%).
Collapse
Affiliation(s)
- Genman Chen
- Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China
| | - Xin Zhang
- Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China
| | - Yaozong Gu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315211, P. R. China
| | - Jiafang Jian
- Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China
| | - Qiuju Zhang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315211, P. R. China
| | - Qin Wang
- Department of Microelectronic Science and Engineering, Faculty of Science, Ningbo University, Ningbo, 315211, P. R. China
| | - Da Zheng
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315211, P. R. China
| | - Lan Xia
- Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China
| | - Jianxin Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315211, P. R. China
| | - He Miao
- Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China
| | - Jinliang Yuan
- Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China
| |
Collapse
|
3
|
Oladapo BI, Olawumi MA, Olugbade TO, Tin TT. Advancing sustainable materials in a circular economy for decarbonisation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121116. [PMID: 38772230 DOI: 10.1016/j.jenvman.2024.121116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/15/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024]
Abstract
This research paper delves into the intricate interplay between decarbonisation and sustainability, focusing on adopting chemical looping technologies. Deep decarbonisation scenarios necessitate a profound transformation in various sectors to mitigate climate change, and oil refineries, as pivotal players, must adapt to these changes. Employing the BLUES integrated assessment model, we evaluate the evolution of the refining sector in decarbonisation pathways, emphasising its potential for sustainability through repurposing and emissions mitigation. Additionally, we delve into chemical looping technologies, including Solar Thermal Chemical Looping (STCL), Reverse Water Gas Shift Chemical Looping (RWGS-CL), Chemical Looping Reforming (CLR), and Super Dry Reforming (SDR), elucidating their principles and contributions to carbon dioxide (CO2) conversion. These technologies offer promising routes for CO2 capture and present opportunities for sustainable carbon loop cycles, potentially revolutionising industries' emissions reduction efforts. In a world of climate change, this research illuminates a sustainable path forward by integrating decarbonisation and innovative CO2 management strategies.
Collapse
Affiliation(s)
- Bankole I Oladapo
- Faculty of Data Science and Information Technology, INTI International University, Persiaran Perdana BBN, Putra Nilai, Malaysia; School of Science and Engineering, University of Dundee, Dundee, UK.
| | - Mattew A Olawumi
- Computing, Engineering and Media, De Montfort University, Leicester, United Kingdom, UK
| | - Temitope Olumide Olugbade
- Faculty of Data Science and Information Technology, INTI International University, Persiaran Perdana BBN, Putra Nilai, Malaysia; School of Science and Engineering, University of Dundee, Dundee, UK
| | - Ting Tin Tin
- Faculty of Data Science and Information Technology, INTI International University, Persiaran Perdana BBN, Putra Nilai, Malaysia
| |
Collapse
|
4
|
Wu PJ, Huang CH, Hsieh CT, Liu WR. Synthesis and Characterization of MnIn 2S 4/Single-Walled Carbon Nanotube Composites as an Anode Material for Lithium-Ion Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:716. [PMID: 38668210 PMCID: PMC11053989 DOI: 10.3390/nano14080716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
In this study, we synthesized a transition metal sulfide (TMS) with a spinel structure, i.e., MnIn2S4 (MIS), using a two-step hydrothermal and sintering process. In the context of lithium-ion battery (LIB) applications, ternary TMSs are being considered as interesting options for anode materials. This consideration arises from their notable attributes, including high theoretical capacity, excellent cycle stability, and cost-effectiveness. However, dramatic volume changes result in the electrochemical performance being severely limited, so we introduced single-walled carbon nanotubes (SWCNTs) and prepared an MIS/SWCNT composite to enhance the structural stability and electronic conductivity. The synthesized MIS/SWCNT composite exhibits better cycle performance than bare MIS. Undergoing 100 cycles, MIS only yields a reversible capacity of 117 mAh/g at 0.1 A/g. However, the MIS/SWCNT composite exhibits a reversible capacity as high as 536 mAh/g after 100 cycles. Moreover, the MIS/SWCNT composite shows a better rate capability. The current density increases with cycling, and the SWCNT composite exhibits high reversible capacities of 232 and 102 mAh/g at 2 A/g and 5 A/g, respectively. Under the same conditions, pristine MIS can only deliver reversible capacities of 21 and 4 mAh/g. The results indicate that MIS/SWCNT composites are promising anode materials for LIBs.
Collapse
Affiliation(s)
- Pei-Jun Wu
- Department of Chemical Engineering, R&D Center for Membrane Technology, Center for Circular Economy, Chung Yuan Christian University, 200 Chung Pei Road, Chungli District, Taoyuan City 320, Taiwan;
| | - Chia-Hung Huang
- Department of Electrical Engineering, National University of Tainan, No. 33, Sec. 2, Shulin St., West Central District, Tainan City 700, Taiwan;
- Metal Industries Research and Development Centre, Kaohsiung 701, Taiwan
| | - Chien-Te Hsieh
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Wei-Ren Liu
- Department of Chemical Engineering, R&D Center for Membrane Technology, Center for Circular Economy, Chung Yuan Christian University, 200 Chung Pei Road, Chungli District, Taoyuan City 320, Taiwan;
| |
Collapse
|
5
|
Liu Q, Chen Q, Tang Y, Cheng HM. Interfacial Modification, Electrode/Solid-Electrolyte Engineering, and Monolithic Construction of Solid-State Batteries. ELECTROCHEM ENERGY R 2023. [DOI: 10.1007/s41918-022-00167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
6
|
Brontowiyono W, AbdulHussein WA, Smaisim GF, Mahmoud MZ, Singh S, Lafta HA, Hussein SA, Kadhim MM, Mustafa YF, Aravindhan S. Annealing Temperature Effect on Structural, Magnetic Properties and Methyl Green Degradation of Fe2O3 Nanostructures. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2023; 48:375-382. [DOI: 10.1007/s13369-022-07118-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/28/2022] [Indexed: 11/30/2022]
|
7
|
Farajollahi A, Rostami M, Feili M, Qader DN. Reducing the cooling and heating energy of a building in hot and cold climates by employing phase change materials. JOURNAL OF BUILDING ENGINEERING 2022; 57:104917. [DOI: 10.1016/j.jobe.2022.104917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
|
8
|
Qiu Y, Wei X, Liu N, Song Y, Bi L, Long X, Chen Z, Wang S, Liao J. Plasma-Induced Amorphous N-Nano Carbon Shell for Improving Structural Stability of LiNi0.8Co0.1Mn0.1O2 Cathode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Wen N, Chen S, Lu Q, Li Y, Fan Q, Kuang Q, Dong Y, Zhao Y. Insights into the enhanced electrochemical performance of MnV 2O 6 nanoflakes as an anode material for advanced lithium storage. NANOSCALE 2022; 14:10428-10438. [PMID: 35815897 DOI: 10.1039/d2nr02565e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Binary transition metal oxides (BTMOs) are regarded as potential anode materials for lithium-ion batteries (LIBs) owing to their low cost, high specific capacities, and environmental friendliness. In this work, MnV2O6 nanoflakes are successfully synthesized by a facile hydrothermal method. When evaluated as an anode material for LIBs, benefiting from the activation process, the as-prepared MnV2O6 nanoflake electrode delivers a high reversible specific capacity of 1439 mA h g-1 after 300 cycles at a current density of 200 mA g-1, and especially presents a specific capacity of 1010 mA h g-1 after 700 cycles at a higher current density of 1 A g-1. Furthermore, MnV2O6 shows a pleasurable rate capability; a reversible specific capacity of 867 mA h g-1 can be obtained at a current density of 2000 mA g-1, and when the current density is returned to 200 mA g-1 and continues for another 80 cycles, the specific capacity can still reach 1499 mA h g-1. Meanwhile, the morphology variation and electrochemical kinetic behavior of the MnV2O6 electrode during cycling are scrutinized in detail. After that, the electrochemical reaction mechanism of MnV2O6 during the discharge/charge process is corroborated by in situ X-ray diffraction (XRD), which involves the coexistence of a conversion reaction and solid solution behavior. The practical application of MnV2O6 nanoflakes as an anode material is examined as well. Sure enough, the NCM811//MnV2O6 full-cell exhibits excellent lithium-storage performance.
Collapse
Affiliation(s)
- Ni Wen
- School of Physics, South China University of Technology, Guangzhou, 510640, P. R. China.
| | - Siyuan Chen
- School of Physics, South China University of Technology, Guangzhou, 510640, P. R. China.
| | - Qiuchen Lu
- School of Physics, South China University of Technology, Guangzhou, 510640, P. R. China.
| | - Yunbo Li
- School of Physics, South China University of Technology, Guangzhou, 510640, P. R. China.
| | - Qinghua Fan
- School of Physics, South China University of Technology, Guangzhou, 510640, P. R. China.
| | - Quan Kuang
- School of Physics, South China University of Technology, Guangzhou, 510640, P. R. China.
| | - Youzhong Dong
- School of Physics, South China University of Technology, Guangzhou, 510640, P. R. China.
| | - Yanming Zhao
- School of Physics, South China University of Technology, Guangzhou, 510640, P. R. China.
- South China Institute of Collaborative Innovation, Dongguan, 523808, P. R. China
| |
Collapse
|
10
|
Jasim SA, Kzar HH, Jalil AT, Kadhim MM, Mahmoud MZ, Al-Gazally ME, Ali Nasser H, Ahmadi Z. DFT investigation of BN, AlN, and SiC fullerene sensors for arsine gas detection and removal. MAIN GROUP CHEMISTRY 2022; 21:513-521. [DOI: 10.3233/mgc-210145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Quantum chemical density functional theory (DFT) calculations were performed to investigate the adsorption of arsine (AsH3) gaseous substance at the surface of representative models of boron nitride (B16N16), aluminum nitride (Al16N16), and silicon carbide (Si16C16) fullerene-like nanocages. The results indicated that the adsorption processes of AsH3 could be taken place by each of B16N16, Al16N16, and Si16C16 nanocages. Moreover, the electronic molecular orbital properties indicated that the electrical conductivity of nanocages were changed after the adsorption processes enabling them to be used for sensor applications. To analyze the strength of interacting models, the quantum theory of atoms in molecules (QTAIM) was employed. As a typical achievement of this work, it could be mentioned that the investigated Si16C16 fullerene-like nanocage could work as a suitable adsorbent for the AsH3 gaseous substance proposing gas-sensor role for the Si16C16 fullerene-like nanocage.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar-Ramadi, Iraq
| | - Hamzah H. Kzar
- Department of Chemistry, College of Veterinary Medicine, Al-Qasim Green University, Al-Qasim, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, Iraq
| | - Mustafa M. Kadhim
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- Department of Dentistry, Kut University College, Kut, Wasit, Iraq
- Department of Pharmacy, Osol Aldeen University College, Baghdad, Iraq
| | - Mustafa Z. Mahmoud
- Department of Radiology and Medical Imaging, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al- Kharj, Saudi Arabia
- Faculty of Health, University of Canberra, Canberra, ACT, Australia
| | | | | | | |
Collapse
|
11
|
Evaluating the potential of graphene-like boron nitride as a promising cathode for Mg-ion batteries. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116413] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
12
|
Performance Comparison of EGSB and IC Reactors for Treating High-Salt Fatty Acid Organic Production Wastewater. Processes (Basel) 2022. [DOI: 10.3390/pr10071295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This study used the EGSB and IC reactors to treat the high-salt and high-concentration organic wastewater (high-salt fatty acid production wastewater) and compared their performances The experimental results showed that the optimal influent water quality thresholds for both bioreactors to treat this wastewater were a COD concentration of 18,000 mg/L and a sulfate ion concentration of about 8000 mg/L. The reactor operated well when C/S was greater than 2.8. In addition, the value of C/S should not be less than 1.5. This is due to that under this condition, the sulfate reduction process has a significant impact on the removal of COD, and MPB may be inhibited by sulfides. The organic load OLR should not be greater than 10 kgCOD/(m3·d). It was also found that the start-up time of the IC reactor with external circulation was slightly shorter, and the COD removal effect, gas production rate, and load tolerance were slightly better than those of the EGSB reactor, the best reflux ratio of the two reactors was 6:1. The appropriate rising flow rate was 0.4 m/h.
Collapse
|
13
|
Lan Y, Yan Q, Zhang X, Yao W, Wang C, Lee CS, Lightfoot P, Tang Y. Perovskite-derived structure modulation in the iron sulfate family. Chem Commun (Camb) 2022; 58:7074-7077. [PMID: 35662300 DOI: 10.1039/d2cc02242g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the first example of a perovskite sulfate [Na3(H2O)]Fe(SO4)3. Further structure modulation, by dimensional reduction or ligand extension, has resulted in two related layered perovskite-like compounds Na6Fe(SO4)4 and Na12Fe3(SO4)6F8. Taken together, these results open up a more general strategy for the future design of more complex perovskite-related materials.
Collapse
Affiliation(s)
- Yuanqi Lan
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. .,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qi Yan
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. .,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Xinyuan Zhang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin 300384, China
| | - Wenjiao Yao
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Chenchen Wang
- Center of Super-Diamond and Advanced Films and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Philip Lightfoot
- School of Chemistry and EaStChem, University of St Andrews, St Andrews, Fife, KY16 9ST, UK.
| | - Yongbing Tang
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. .,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
14
|
Lei X, Liang X, Yang R, Zhang F, Wang C, Lee CS, Tang Y. Rational Design Strategy of Novel Energy Storage Systems: Toward High-Performance Rechargeable Magnesium Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200418. [PMID: 35315220 DOI: 10.1002/smll.202200418] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Rechargeable magnesium batteries (RMBs) are promising candidates to replace currently commercialized lithium-ion batteries (LIBs) in large-scale energy storage applications owing to their merits of abundant resources, low cost, high theoretical volumetric capacity, etc. However, the development of RMBs is still facing great challenges including the incompatibility of the electrolyte and the lack of suitable cathode materials with high reversible capacity and fast kinetics of Mg2+ . While tremendous efforts have been made to explore compatible electrolytes and appropriate electrode materials, the rational design of unconventional Mg-based battery systems is another effective strategy for achieving high electrochemical performance. This review specifically discusses the recent research progress of various Mg-based battery systems. First, the optimization of electrolyte and electrode materials for conventional RMBs is briefly discussed. Furthermore, various Mg-based battery systems, including Mg-chalcogen (S, Se, Te) batteries, Mg-halogen (Br2 , I2 ) batteries, hybrid-ion batteries, and Mg-based dual-ion batteries are systematically summarized. This review aims to provide a comprehensive understanding of different Mg-based battery systems, which can inspire latecomers to explore new strategies for the development of high-performance and practically available RMBs.
Collapse
Affiliation(s)
- Xin Lei
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Liang
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Yang
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Center of Super-Diamond and Advanced Film (COSDAF), City University of Hong Kong, Kowloon, Hong Kong, SAR, 999077, China
| | - Fan Zhang
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Chenchen Wang
- Center of Super-Diamond and Advanced Film (COSDAF), City University of Hong Kong, Kowloon, Hong Kong, SAR, 999077, China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Film (COSDAF), City University of Hong Kong, Kowloon, Hong Kong, SAR, 999077, China
| | - Yongbing Tang
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Key Laboratory of Advanced Materials Processing & Mold, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, 450002, China
| |
Collapse
|
15
|
Zhu Y, Tao Z, Cai C, Tan Y, Wang A, Yang Y. Facile synthesis Zn-Ni bimetallic MOF with enhanced crystallinity for high power density supercapacitor applications. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Abdalkareem Jasim S, Jade Catalan Opulencia M, Abdusalamovich Khalikov A, Kamal Abdelbasset W, Potrich E, Xu T. Investigation of reaction mechanisms of CO2 reduction to methanol by Ni-C80 and Co-Si60 catalysts. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Liu J, jabbari H, Kadhim MM, Javed Ansari M, Ghaffar Ebadi A. Design organic material with acceptor-π-donor configuration for high performance solar cells. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
A Review of High-Energy Density Lithium-Air Battery Technology: Investigating the Effect of Oxides and Nanocatalysts. J CHEM-NY 2022. [DOI: 10.1155/2022/2762647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In vehicles that require a lot of electricity, such as electric vehicles, it is necessary to use high-energy batteries. Among the developed batteries, the lithium-ion battery has shown better performance. This battery has an energy density of 10 equal to that of a lithium-ion battery and uses air oxygen as the active material of the cathode and anode like a lithium-ion battery made of lithium metal. The cathode used in these batteries must have special properties such as strong catalytic activity and high conductivity, and nanotechnology has greatly helped to improve the materials used in the cathode of lithium-air batteries. The importance of proper catalyst distribution and the relationship between the oxide product and the catalyst and the indirect effect of the ORR catalyst on the OER reaction is not present in the fuel cell. The maximum capacity of lithium-air battery theory using graphene under optimal electron conduction conditions and the experimental maximum obtained for graphene by optimizing the structure geometry, examples of structural engineering using carbon fiber and carbon nanotubes in cathode fabrication with the ability to perform the reaction properly while providing space for lithium oxide placement, are examined. This article describes the mechanism of this battery, and its components are examined. The challenges of using this battery and the application of nanotechnology to solve these challenges are also discussed.
Collapse
|
19
|
Potential of Vanadium (V) doped CNT(10, 0) and Manganese (Mn) doped carbon nanocage (C60) as catalysts for oxygen reduction reaction in fuel cells. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|