1
|
Wang X, Yue D, Yang C, Xu M, Chang L, Geng C, Duan S, Shen X. La(OTf) 3-Catalyzed Benzannulation of 2-Arylidene-1 H-indene-1,3(2 H)-diones with Enamino Esters: Direct Access to Functionalized Fluorenone Derivatives. J Org Chem 2025; 90:3825-3833. [PMID: 40052733 DOI: 10.1021/acs.joc.4c02369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
An attractive method for the preparation of functional fluorenone derivatives has been developed via La(OTf)3-catalyzed benzannulation of 2-arylidene-1H-indene-1,3(2H)-diones with enamino esters. The reaction involves Michael addition, intramolecular cyclization, dehydration, and aromatization in a one-step process and affords a wide range of functional fluorenone derivatives in moderate to good yields. Moreover, this protocol provides several advantages, including broad substrate scope, readily available materials, high atom economy, and applicability for large-scale synthesis.
Collapse
Affiliation(s)
- Xuequan Wang
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Chemistry and Resources Engineering, Honghe University, Mengzi, Yunnan 661100, P. R. China
| | - Dan Yue
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Chemistry and Resources Engineering, Honghe University, Mengzi, Yunnan 661100, P. R. China
| | - Changhui Yang
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Chemistry and Resources Engineering, Honghe University, Mengzi, Yunnan 661100, P. R. China
| | - Mingde Xu
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Chemistry and Resources Engineering, Honghe University, Mengzi, Yunnan 661100, P. R. China
| | - Longguiyu Chang
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Chemistry and Resources Engineering, Honghe University, Mengzi, Yunnan 661100, P. R. China
| | - Chunyan Geng
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Chemistry and Resources Engineering, Honghe University, Mengzi, Yunnan 661100, P. R. China
| | - Suyue Duan
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Chemistry and Resources Engineering, Honghe University, Mengzi, Yunnan 661100, P. R. China
| | - Xianfu Shen
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, Yunnan 655011, P. R. China
| |
Collapse
|
2
|
Achache M, Elouilali Idrissi G, Chraka A, Ben Seddik N, Draoui K, Bouchta D, Mohamed C. Detection of paracetamol by a montmorillonite-modified carbon paste sensor: A study combining MC simulation, DFT computation and electrochemical investigations. Talanta 2024; 274:126027. [PMID: 38643649 DOI: 10.1016/j.talanta.2024.126027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/21/2024] [Accepted: 03/30/2024] [Indexed: 04/23/2024]
Abstract
This study aims to develop a suitable electrochemical electrode through the incorporation of potassium montmorillonite (MMTK10)clay into the carbon matrix for the direct and sensitive determination of paracetamol (PAR) in pharmaceutical formulations. Electrochemical characterization of the electrodes involves the use of techniques such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The results reveal that the voltammetric response of PAR is linear over a wide concentration range (1.0-15 μM), with a low detection limit of 0.46 μM. Analytically, PAR recovery results were around 94%, indicating that the developed electrode is highly suitable for PAR detection in pharmaceutical formulation. Additionally, density functional theory (DFT) is employed to investigate the reactivity of PAR and explain the interaction process of PAR on the electrode surface at different pH values. A Monte Carlo simulations model is developed to provide a deeper understanding of the adsorption mechanism, particularly to comprehend molecular interactions and preferential orientations of PAR with MMT fractions at the electrode surface. Reduced Density Gradient is calculated and discussed using techniques such as Multiwfn and Visualization of Molecular Dynamics. The developed CPE-MMTK10 sensor provided a simple preparation method, rapid response, high sensitivity, reproducibility, strong selectivity, and extended stability. Moreover, there is a good correlation between most parameters calculated by DFT and experimental results, thereby reinforcing the validity of the theoretical approach in this study.
Collapse
Affiliation(s)
- Mohamed Achache
- Laboratory of Materials Engineering and Sustainable Energy (LMESE), Faculty of Science, Abdelmalek Essaadi University, B.P. 2121, 93002, Tetouan, Morocco
| | - Ghizlane Elouilali Idrissi
- Laboratory of Materials Engineering and Sustainable Energy (LMESE), Faculty of Science, Abdelmalek Essaadi University, B.P. 2121, 93002, Tetouan, Morocco; Laboratory Information Systems and Software Engineering (LISSE), National School of Applied Sciences of Tetouan, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Anas Chraka
- Laboratory of Materials Engineering and Sustainable Energy (LMESE), Faculty of Science, Abdelmalek Essaadi University, B.P. 2121, 93002, Tetouan, Morocco
| | - Nordin Ben Seddik
- Laboratory of Materials Engineering and Sustainable Energy (LMESE), Faculty of Science, Abdelmalek Essaadi University, B.P. 2121, 93002, Tetouan, Morocco
| | - Khalid Draoui
- Laboratory of Materials Engineering and Sustainable Energy (LMESE), Faculty of Science, Abdelmalek Essaadi University, B.P. 2121, 93002, Tetouan, Morocco
| | - Dounia Bouchta
- Laboratory of Materials Engineering and Sustainable Energy (LMESE), Faculty of Science, Abdelmalek Essaadi University, B.P. 2121, 93002, Tetouan, Morocco
| | - Choukairi Mohamed
- Laboratory of Materials Engineering and Sustainable Energy (LMESE), Faculty of Science, Abdelmalek Essaadi University, B.P. 2121, 93002, Tetouan, Morocco.
| |
Collapse
|
3
|
Wei Q, Meng C, Xiao LZ, He Y, Yin Q, Zhou Y, Song S, Qiang R, Yang Y, Li Z, Hu Z. Asymmetric Supercapacitors based on 1,10-phenanthroline-5,6-dione Molecular Electrodes Paired with MXene. CHEMSUSCHEM 2024; 17:e202301370. [PMID: 37962513 DOI: 10.1002/cssc.202301370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
An efficient approach to increase the energy density of supercapacitors is to prepare electrode materials with larger specific capacitance and increase the potential difference between the positive and negative electrodes in the device. Herein, an organic molecular electrode (OME) is prepared by anchoring 1,10-phenanthroline-5,6-dione (PD), which possesses two pyridine rings and an electron-deficient conjugated system, onto reduced graphene oxide (rGO). Because of the electron-deficient conjugated structure of PD molecule, PD/rGOs exhibit a more positive redox peak potential along with the advantages of high capacitance-controlled behaviour and fast reaction kinetics. Additionally, the small energy gap between the lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) leads to increased conductivity in PD/rGO. To assemble the asymmetric supercapacitor (ASC), a two-dimensional metal carbide, as known as MXene, with a chemical composition of Ti3C2Tx is selected as the negative electrode due to its exceptional performance, and PD/rGO-0.5 is employed as the positive electrode. Consequently, the working voltage is expanded up to 1.8 V. Through further electrochemical measurements, the assembled ASC (PD/rGO-0.5//Ti3C2Tx) achieves a remarkable energy density of 36.8 Wh kg-1. Remarkably, connecting two ASCs in series can power 73 LEDs, showcasing its promising potential for energy storage applications.
Collapse
Affiliation(s)
- Qiaoqiao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Congcong Meng
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Liang Zhikun Xiao
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Yuanyuan He
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Qing Yin
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Yi Zhou
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Shengmiao Song
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Ruibing Qiang
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Yuying Yang
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Zhimin Li
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Zhongai Hu
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| |
Collapse
|
4
|
Shi M, Peng C, Zhang X. A Novel Aqueous Asymmetric Supercapacitor based on Pyrene-4,5,9,10-Tetraone Functionalized Graphene as the Cathode and Annealed Ti 3 C 2 T x MXene as the Anode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301449. [PMID: 36892168 DOI: 10.1002/smll.202301449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Asymmetric supercapacitors (ASCs), employing two dissimilar electrode materials with a large redox peak position difference as cathode and anode, have been designed to further broaden the voltage window and improve the energy density of supercapacitors. Organic molecule based electrodes can be constructed by combining redox-active organic molecules with conductive carbon-based materials such as graphene. Herein, pyrene-4,5,9,10-tetraone (PYT), a redox-active molecule with four carbonyl groups, exhibits a four-electron transfer process and can potentially deliver a high capacity. PYT is noncovalently combined with two different kinds of graphene (Graphenea [GN] and LayerOne [LO]) at different mass ratios. The PYT-functionalized GN electrode (PYT/GN 4-5) possesses a high capacity of 711 F g-1 at 1 A g-1 in 1 M H2 SO4 . To match with the PYT/GN 4-5 cathode, an annealed-Ti3 C2 Tx (A-Ti3 C2 Tx ) MXene anode with a pseudocapacitive character is prepared by pyrolysis of pure Ti3 C2 Tx . The assembled PYT/GN 4-5//A-Ti3 C2 Tx ASC delivers an outstanding energy density of 18.4 Wh kg-1 at a power density of 700 W kg-1 . The PYT-functionalized graphene holds great potential for high-performance energy storage devices.
Collapse
Affiliation(s)
- Mangmang Shi
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, Göteborg, SE-412 96, Sweden
- School of physics, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Cheng Peng
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, Göteborg, SE-412 96, Sweden
| | - Xiaoyan Zhang
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, Göteborg, SE-412 96, Sweden
| |
Collapse
|
5
|
Boateng E, Thiruppathi AR, Hung CK, Chow D, Sridhar D, Chen A. Functionalization of Graphene-based Nanomaterials for Energy and Hydrogen Storage. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
6
|
Chao S, Zhao Y, Zhu Y, Zhou W, Zhu D, Liang Y, Li D, Wu Y, He Y, Xu J, Liu P. Intrinsically active capsaicin non-covalently modified nitrogen doped graphene for high-performance supercapacitors. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer Engineering, Nnamdi Azikiwe University, Faculty of Engineering, Awka, Nigeria
| |
Collapse
|
8
|
He Y, Wei Q, An N, Meng C, Hu Z. Organic Small-Molecule Electrodes: Emerging Organic Composite Materials in Supercapacitors for Efficient Energy Storage. Molecules 2022; 27:molecules27227692. [PMID: 36431793 PMCID: PMC9694881 DOI: 10.3390/molecules27227692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Organic small molecules with electrochemically active and reversible redox groups are excellent candidates for energy storage systems due to their abundant natural origin and design flexibility. However, their practical application is generally limited by inherent electrical insulating properties and high solubility. To achieve both high energy density and power density, organic small molecules are usually immobilized on the surface of a carbon substrate with a high specific surface area and excellent electrical conductivity through non-covalent interactions or chemical bonds. The resulting composite materials are called organic small-molecule electrodes (OMEs). The redox reaction of OMEs occurs near the surface with fast kinetic and higher utilization compared to storing charge through diffusion-limited Faraday reactions. In the past decade, our research group has developed a large number of novel OMEs with different connections or molecular skeletons. This paper introduces the latest development of OMEs for efficient energy storage. Furthermore, we focus on the design motivation, structural advantages, charge storage mechanism, and various electrode parameters of OMEs. With small organic molecules as the active center, OMEs can significantly improve the energy density at low molecular weight through proton-coupled electron transfer, which is not limited by lattice size. Finally, we outline possible trends in the rational design of OMEs toward high-performance supercapacitors.
Collapse
Affiliation(s)
- Yuanyuan He
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Qiaoqiao Wei
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ning An
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
- Correspondence: (N.A.); (Z.H.)
| | - Congcong Meng
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
- School of Electronic and Information Engineering, Lanzhou City University, Lanzhou 730070, China
| | - Zhongai Hu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
- Correspondence: (N.A.); (Z.H.)
| |
Collapse
|
9
|
Bathula C, Rabani I, Opoku H, Youi HK, Gopal Sree V, Mane SD, Seo YS, Kim HS. Efficient synthesis of acetylene-bridged carbazole-based dimer for electrochemical energy storage: Experimental and DFT studies. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|