1
|
Xiao Q, Song X, Jin X. Reinforcing active sites and multi-empty orbitals on N, S, B co-doped lignin-based catalysts for rechargeable zinc-air batteries. Int J Biol Macromol 2025; 306:141691. [PMID: 40037459 DOI: 10.1016/j.ijbiomac.2025.141691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/20/2025] [Accepted: 03/01/2025] [Indexed: 03/06/2025]
Abstract
The advancement of rechargeable zinc-air batteries (ZABs) faces significant challenges, particularly due to substantial polarization and the slow kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Multi-element doping represents an effective strategy to address the deficiencies in catalytic activity and stability observed in single-atom catalysts. In this study, we prepare an activated lignin carbon catalyst doped with three elements (N, S, and B) via salt assisted (KOH), referred to as AL-NSB, with the aim is to achieve bifunctional catalysis through the synergistic interaction between the three elements to influence the distribution of the electron cloud and the extent of carbonaceous defects within the catalyst. The catalyst exhibits an ORR half-wave potential (E1/2) of 0.798 V relative to the reversible hydrogen electrode. The superior activity of AL-NSB results in a peak power density of 293.76 mW cm-2 for the ZAB, along with an excellent cycle lifetime exceeding 1000 h, surpassing the performance of commercial Pt/C-RuO2 catalysts. The findings of this study underscore the critical roles of N, S, and B in enhancing the activity and stability of both the oxygen reduction and evolution reactions.
Collapse
Affiliation(s)
- Qiang Xiao
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 10083, China; Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Xianliang Song
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 10083, China; Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Xiaojuan Jin
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 10083, China; Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
2
|
Li H, Yan G, Zhao H, Howlett PC, Wang X, Fang J. Earthworm-Inspired Co/Co 3O 4/CoF 2@NSC Nanofibrous Electrocatalyst with Confined Channels for Enhanced ORR/OER Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311272. [PMID: 38377229 DOI: 10.1002/adma.202311272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/03/2024] [Indexed: 02/22/2024]
Abstract
The rational construction of highly active and durable oxygen-reactive electrocatalysts for oxygen reduction/evolution reaction (ORR/OER) plays a critical role in rechargeable metal-air batteries. It is pivotal to achieve optimal utilization of electrocatalytically active sites and valid control of the high specific internal surface area. Inspiration for designing electrocatalysts can come from nature, as it is full of precisely manipulated and highly efficient structures. Herein, inspired by earthworms fertilizing soil, a 3D carbon nanofibrous electrocatalyst with multiple interconnected nanoconfined channels, cobalt-based heterojunction active particles and enriched N, S heteroatoms (Co/Co3O4/CoF2@NSC with confined channels) is rationally designed, showing superior bifunctional electrocatalytic activity in alkaline electrolyte, even outperforming that of benchmark Pt/C-RuO2 catalyst. This work demonstrates a new method for porous structural regulation, in which the internal confined channels within the nanofibers are controllably formed by the spontaneous migration of cobalt-based nanoparticles under a CO2 atmosphere. Theoretical analysis reveals that constructing Co/Co3O4/CoF2@NSC electrocatalyst with confined channels can greatly adjust the electron distribution, effectively lower the reaction barrier of inter-mediate and reduce the OER/ORR overpotential. This work introduces a novel and nature-inspired strategy for designing efficient bifunctional electrocatalysts with well-designed architectures.
Collapse
Affiliation(s)
- Han Li
- The Hong Kong Polytechnic University, JC STEM lab of Sustainable Fibers and Textiles, School of Fashion and Textiles, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Guilong Yan
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Haoyue Zhao
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Patrick C Howlett
- ARC Centre of Excellence for Electromaterials Science (ACES), Institute for Frontier Materials, Deakin University, Geelong, VIC3200, Australia
| | - Xungai Wang
- The Hong Kong Polytechnic University, JC STEM lab of Sustainable Fibers and Textiles, School of Fashion and Textiles, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Jian Fang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
3
|
Xu C, Li Y, Li D, Zhang Y, Liu B, Akhon MDH, Huo P. Electrospinning-derived transition metal/carbon nanofiber composites as electrocatalysts for Zn-air batteries. NANOSCALE 2024; 16:8286-8306. [PMID: 38602047 DOI: 10.1039/d4nr00389f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The sluggish kinetics of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) significantly impede the broader implementation of Zn-air batteries (ZABs), underscoring the necessity for advanced high-efficiency materials to catalyze these electrochemical processes. Recent advancements have highlighted the potential of transition metal/carbon nanofiber (TM/CNF) composite materials, synthesized via electrospinning technology, due to their expansive surface area, profusion of active sites, and elevated catalytic efficacy. This review comprehensively examines the structural characteristics of TM/CNFs, with a particular emphasis on the pivotal role of electrospinning technology in fabricating diverse structural configurations. Additionally, it delves into the mechanistic underpinnings of various strategies aimed at augmenting the catalytic activity of TM/CNFs. A meticulous discourse is also presented on the application scope of TM/CNFs in the realm of electrocatalysis, with a special focus on their impact on the performance of assembled ZABs. Lastly, this review encapsulates the challenges and future prospects in the development of TM/CNF composite materials via electrospinning, aiming to provide an exhaustive understanding of the current state of research in this domain and to foster further advancements in the commercialization of ZABs.
Collapse
Affiliation(s)
- Chengxiao Xu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Yuzheng Li
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Daming Li
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Yingjie Zhang
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - M D Hasan Akhon
- School of mechanical engineering, Shandong University of Technology, Zibo 255000, China
| | - Peipei Huo
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
4
|
Abstract
The breadth and importance of polymerized ionic liquids (PILs) are steadily expanding, and this review updates advances and trends in syntheses, properties, and applications over the past five to six years. We begin with an historical overview of the genesis and growth of the PIL field as a subset of materials science. The genesis of ionic liquids (ILs) over nano to meso length-scales exhibiting 0D, 1D, 2D, and 3D topologies defines colloidal ionic liquids, CILs, which compose a subclass of PILs and provide a synthetic bridge between IL monomers (ILMs) and micro to macro-scale PIL materials. The second focus of this review addresses design and syntheses of ILMs and their polymerization reactions to yield PILs and PIL-based materials. A burgeoning diversity of ILMs reflects increasing use of nonimidazolium nuclei and an expanding use of step-growth chemistries in synthesizing PIL materials. Radical chain polymerization remains a primary method of making PILs and reflects an increasing use of controlled polymerization methods. Step-growth chemistries used in creating some CILs utilize extensive cross-linking. This cross-linking is enabled by incorporating reactive functionalities in CILs and PILs, and some of these CILs and PILs may be viewed as exotic cross-linking agents. The third part of this update focuses upon some advances in key properties, including molecular weight, thermal properties, rheology, ion transport, self-healing, and stimuli-responsiveness. Glass transitions, critical solution temperatures, and liquidity are key thermal properties that tie to PIL rheology and viscoelasticity. These properties in turn modulate mechanical properties and ion transport, which are foundational in increasing applications of PILs. Cross-linking in gelation and ionogels and reversible step-growth chemistries are essential for self-healing PILs. Stimuli-responsiveness distinguishes PILs from many other classes of polymers, and it emphasizes the importance of segmentally controlling and tuning solvation in CILs and PILs. The fourth part of this review addresses development of applications, and the diverse scope of such applications supports the increasing importance of PILs in materials science. Adhesion applications are supported by ionogel properties, especially cross-linking and solvation tunable interactions with adjacent phases. Antimicrobial and antifouling applications are consequences of the cationic nature of PILs. Similarly, emulsion and dispersion applications rely on tunable solvation of functional groups and on how such groups interact with continuous phases and substrates. Catalysis is another significant application, and this is an historical tie between ILs and PILs. This component also provides a connection to diverse and porous carbon phases templated by PILs that are catalysts or serve as supports for catalysts. Devices, including sensors and actuators, also rely on solvation tuning and stimuli-responsiveness that include photo and electrochemical stimuli. We conclude our view of applications with 3D printing. The largest components of these applications are energy related and include developments for supercapacitors, batteries, fuel cells, and solar cells. We conclude with our vision of how PIL development will evolve over the next decade.
Collapse
Affiliation(s)
- Qi Li
- Department of Materials Science, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, PR China
| | - Feng Yan
- Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - John Texter
- Strider Research Corporation, Rochester, New York 14610-2246, United States
- School of Engineering, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| |
Collapse
|
5
|
Qiu Q, Wang J, Yao P, Li Y. A facile coprecipitation approach for synthesizing LaNi 0.5Co 0.5O 3 as the cathode for a molten-salt lithium-oxygen battery. Faraday Discuss 2024; 248:327-340. [PMID: 37753574 DOI: 10.1039/d3fd00078h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The cathode of a lithium-oxygen battery (LOB) should be well designed to deliver high catalytic activity and long stability, and to provide sufficient space for accommodating the discharge product. Herein, a facile coprecipitation approach is employed to synthesize LaNi0.5Co0.5O3 (LNCO) perovskite oxide with a low annealing temperature. The assembled LOB exhibits superior electrochemical performance with a low charge overpotential of 0.03-0.05 V in the current density range of 0.1-0.5 mA cm-2. The battery ran stably for 119 cycles at a high coulombic efficiency. The superior performance is ascribed to (i) the high catalytic activity of LNCO towards oxygen reduction/evolution reactions; (ii) the increased temperature enabling fast kinetics; and (iii) the LiNO3-KNO3 molten salt enhancing the stability of the LOB operating at high temperature.
Collapse
Affiliation(s)
- Qianyuan Qiu
- Department of Chemical and Metallurgical Engineering, Aalto University, Kemistintie 1, FI-00076 Aalto, Finland.
| | - Jiaqi Wang
- Department of Chemical and Metallurgical Engineering, Aalto University, Kemistintie 1, FI-00076 Aalto, Finland.
- Flexible Printed Electronic Technology Center and State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China
| | - Penghui Yao
- Department of Chemical and Metallurgical Engineering, Aalto University, Kemistintie 1, FI-00076 Aalto, Finland.
| | - Yongdan Li
- Department of Chemical and Metallurgical Engineering, Aalto University, Kemistintie 1, FI-00076 Aalto, Finland.
| |
Collapse
|
6
|
Patel V, Das E, Bhargava A, Deshmukh S, Modi A, Srivastava R. Ionogels for flexible conductive substrates and their application in biosensing. Int J Biol Macromol 2024; 254:127736. [PMID: 38183203 DOI: 10.1016/j.ijbiomac.2023.127736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 01/07/2024]
Abstract
Ionogels are highly conductive gels made from ionic liquids dispersed in a matrix made of organic or inorganic materials. Ionogels are known for high ionic conductivity, flexibility, high thermal and electrochemical stability. These characteristics make them suitable for sensing and biosensing applications. This review discusses about the two main constituents, ionic liquids and matrix, used to make ionogels and effect of these materials on the characteristics of ionogels. Here, the material properties like mechanical, electrochemical and stability are discussed for both polymer matrix and ionic liquid. We have briefly described about the fabrication methods like 3D printing, sol-gel, blade coating, spin coating, aerosol jet printing etc., used to make films or coating of these ionogels. The advantages and disadvantages of each method are also briefly summarized. Finally, the last section provides a few examples of application of flexible ionogels in areas like wearables, human-machine interface, electronic skin and detection of biological molecules.
Collapse
Affiliation(s)
- Vinay Patel
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, 400076, India
| | - Eatu Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, 400076, India
| | - Ameesha Bhargava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, 400076, India
| | - Sharvari Deshmukh
- MIT School of Bioengineering Sciences and Research, MIT ADT University, Loni Kalbhor, Pune 412201, India
| | - Anam Modi
- G.N. Khalsa College, Matunga, Mumbai 400019, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, 400076, India.
| |
Collapse
|
7
|
Zeng Q, Deng N, Wang G, Feng Y, Kang W, Cheng B. In situ growth of surface-reconstructed aluminum fluoride nanoparticles on N, F codoped hierarchical porous carbon nanofibers as efficient ORR/OER bifunctional electrocatalysts for rechargeable zinc-air batteries. J Colloid Interface Sci 2023; 654:1063-1079. [PMID: 39491064 DOI: 10.1016/j.jcis.2023.10.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 11/05/2024]
Abstract
Modified porous carbon fibers have emerged as crucial electrocatalytic materials for zinc-air battery (ZAB) systems. However, most methods for preparing porous carbon fibers are complex and exhibit single functionality and poor catalytic activity, which hinders the development of ZABs. In this study, we design and synthesize a novel type of N, F codoped hierarchical porous carbon fiber with in situ growth of aluminum fluoride nanoparticles (AlF3@HPCNFs) through electrospinning and high-temperature carbonization. The N, F codoping effectively adjusts the charge density of neighboring carbon atoms and introduces additional active sites. Furthermore, the catalytic process induces surface reconstruction of AlF3 nanoparticles, allowing for their full exposure to the liquid electrolyte and accelerated catalytic reactions. Additionally, this interconnected hierarchical porous structure accelerates mass transfer at the oxygen/carbon-based substrate/electrolyte three-phase interfaces, thereby enhancing reaction kinetics and the accessibility of catalytic active sites, ultimately improving the utilization efficiency of these sites. Consequently, the AlF3@HPCNFs catalyst exhibits excellent bifunctional performance with a narrow potential difference (△E = 0.67 V). Moreover, the obtained bifunctional electrocatalyst is utilized for rechargeable ZABs, surpassing commercially available Pt/C + RuO2 cells in terms of high specific capacity (796 mAh gzn-1) and outstanding cycling stability (over 500 h). This research demonstrates the potential of AlF3@HPCNFs as a bifunctional electrocatalyst and introduces a simplified and effective method for the fabrication of metal fluoride-modified and hierarchically porous carbon nanofibers for rechargeable ZABs.
Collapse
Affiliation(s)
- Qiang Zeng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Nanping Deng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Gang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yang Feng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Weimin Kang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Bowen Cheng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
8
|
Tang W, Mai J, Liu L, Yu N, Fu L, Chen Y, Liu Y, Wu Y, van Ree T. Recent advances of bifunctional catalysts for zinc air batteries with stability considerations: from selecting materials to reconstruction. NANOSCALE ADVANCES 2023; 5:4368-4401. [PMID: 37638171 PMCID: PMC10448312 DOI: 10.1039/d3na00074e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023]
Abstract
With the growing depletion of traditional fossil energy resources and ongoing enhanced awareness of environmental protection, research on electrochemical energy storage techniques like zinc-air batteries is receiving close attention. A significant amount of work on bifunctional catalysts is devoted to improving OER and ORR reaction performance to pave the way for the commercialization of new batteries. Although most traditional energy storage systems perform very well, their durability in practical applications is receiving less attention, with issues such as carbon corrosion, reconstruction during the OER process, and degradation, which can seriously impact long-term use. To be able to design bifunctional materials in a bottom-up approach, a summary of different kinds of carbon materials and transition metal-based materials will be of assistance in selecting a suitable and highly active catalyst from the extensive existing non-precious materials database. Also, the modulation of current carbon materials, aimed at increasing defects and vacancies in carbon and electron distribution in metal-N-C is introduced to attain improved ORR performance of porous materials with fast mass and air transfer. Finally, the reconstruction of catalysts is introduced. The review concludes with comprehensive recommendations for obtaining high-performance and highly-durable catalysts.
Collapse
Affiliation(s)
- Wanqi Tang
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
- College of Chemical Engineering, Nanjing Tech University Nanjing 210009 China
| | - Jiarong Mai
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Lili Liu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Nengfei Yu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Lijun Fu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yuhui Chen
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yankai Liu
- Hunan Bolt Power New Energy Co., Ltd Dianjiangjun Industrial Park, Louxing District Loudi 417000 Hunan China
| | - Yuping Wu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
- Hunan Bolt Power New Energy Co., Ltd Dianjiangjun Industrial Park, Louxing District Loudi 417000 Hunan China
- School of Energy and Environment, Southeast University Nanjing 210096 China
| | - Teunis van Ree
- Department of Chemistry, University of Venda Thohoyandou 0950 South Africa
| |
Collapse
|
9
|
Cheng J, Lyu C, Dong G, Liu Y, Hu Y, Han B, Geng D, Zhao D. The Underlying Mechanism Trade-Off between Particle Proximity Effect and Low-Pt Loading for Oxygen Reduction and Methanol Oxidation Reaction Activity. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
10
|
Qiu Q, Long J, Yao P, Wang J, Li X, Pan ZZ, Zhao Y, Li Y. Cathode electrocatalyst in aprotic lithium oxygen (Li-O2) battery: A literature survey. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
11
|
Li Y, Wang B, Wang HF, Tang C. Kinetic-enhanced carbon fiber for rechargeable zinc-air batteries. J Chem Phys 2023; 158:041101. [PMID: 36725517 DOI: 10.1063/5.0135513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Metal-free catalysts are made by the elements with infinite reserve in nature and, therefore, show the potential for large-scale applications in energy devices including metal-air batteries. The construction of metal-air batteries prefers using self-supporting catalysts with favorable activity as well as fast kinetics. However, it is challenging due to the limited electropositivity of metal-free catalysts for O-O bond formation in oxygen evolution reaction (OER), scaling relationship restrictions between OER and oxygen reduction reaction, and difficulty in porosity construction on the monolith electrode surface. In this contribution, through developing a facile methodology of quenching high-temperature carbon clothes in liquid nitrogen, a self-supported carbon cloth with bifunctional active graphene skin and fast kinetics is well constructed to serve as the air cathode in metal-air batteries. Regulated oxygen species and three-dimensionally hierarchical porosity are well constructed on the carbon fiber surfaces, contributing high intrinsic activity and prominently enhanced kinetics, which leads to favorable performances in aqueous as well as flexible rechargeable zinc-air batteries. The work proposed a promising strategy in the rational design and smart synthesis of fast-kinetic monolith electrodes, which refreshes concepts and strategies of advanced material fabrication, and also bridges material science and practical energy devices.
Collapse
Affiliation(s)
- Yang Li
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Bin Wang
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hao-Fan Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Cheng Tang
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
12
|
Han S, Peng S, Gao Z, Sun M, Cheng G, Zhang H, Su X, Chen M, Yu L. Green bridge between waste and energy: conversion the rotten wood into cathode for functional Zn-air battery. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Quantum-Chemical Modeling of the Catalytic Activity of Graphene Doped with Metal Phthalocyanines in ORR. Catalysts 2022. [DOI: 10.3390/catal12070786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The active centers of carbon catalysts doped with cobalt, nickel, copper, manganese, zinc, and chromium were modeled by density functional theory methods. Likewise, the thermodynamics of the oxygen reduction reaction (ORR) on model catalysts were determined. The features of the chemical properties of chromium-containing material, namely its spontaneous oxidation into the hydroxo form, were revealed. In addition, it was established that among the studied catalysts, graphene doped with cobalt showed the best properties.
Collapse
|
14
|
Choong ZY, Lin KYA, Lisak G, Lim TT, Oh WD. Multi-heteroatom-doped carbocatalyst as peroxymonosulfate and peroxydisulfate activator for water purification: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128077. [PMID: 34953256 DOI: 10.1016/j.jhazmat.2021.128077] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Catalytic activation of peroxymonosulfate (PMS) and peroxydisulfate (PDS) (or collectively known as persulfate, PS) using carbocatalyst is increasingly gaining attention as a promising technology for sustainable recalcitrant pollutant removal in water. Single heteroatom doping using either N, S, B or P is widely used to enhance the performance of the carbocatalyst for PS activation. However, the performance enhancement from single heteroatom doping is limited by the type of heteroatom used. To further enhance the performance of the carbocatalyst beyond the limit of single heteroatom doping, multi-heteroatom doping can be conducted. This review aims to provide a state-of-the-art overview on the development of multi-heteroatom-doped carbocatalyst for PS activation. The potential synergistic and antagonistic interactions of various heteroatoms including N and B, N and S, N and P, and N and halogen for PS activation are evaluated. Thereafter, the preparation strategies to develop multi-heteroatom-doped carbocatalyst including one-step and multi-step preparation approaches along with the characterization techniques are discussed. Evidence and summary of the performance of multi-heteroatom-doped carbocatalyst for various recalcitrant pollutants removal via PS activation are also provided. Finally, the prospects of employing multi-heteroatom-doped carbocatalyst including the need to study the correlation between different heteroatom combination, surface moiety type, and amount of dopant with the PS activation mechanism, identifying the best heteroatom combination, improving the durability of the carbocatalyst, evaluating the feasibility for full-scale application, developing low-cost multi-heteroatom-doped carbocatalyst, and assessing the environmental impact are also briefly discussed.
Collapse
Affiliation(s)
- Zheng-Yi Choong
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung, Taiwan
| | - Grzegorz Lisak
- Resource and Reclamation Centre (R3C), Nanyang Environment and Water Research Institute (NEWRI), 1 Cleantech Loop, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Teik-Thye Lim
- Resource and Reclamation Centre (R3C), Nanyang Environment and Water Research Institute (NEWRI), 1 Cleantech Loop, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Wen-Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
15
|
Wu X, Miao H, Yin M, Hu R, Wang F, Zhang H, Xia L, Zhang C, Yuan J. Biomimetic construction of bifunctional perovskite oxygen catalyst for zinc-air batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Zhao R, Chen Y, Huang S. Doping engineering on carbons as electrocatalysts for oxygen reduction reaction. FUNDAMENTAL RESEARCH 2021. [DOI: 10.1016/j.fmre.2021.06.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
17
|
Xie Q, Si W, Shen Y, Wang Z, Uyama H. N- and O-doped hollow carbons constructed by self- and extrinsic activation for the oxygen reduction reaction and flexible zinc-air Batteries. NANOSCALE 2021; 13:16296-16306. [PMID: 34558569 DOI: 10.1039/d1nr04821j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Zinc-air batteries (ZAB), especially those assembled on flexible substrates, have attracted great research attention in electronics and wearable electronics. However, the air-cathode reaction-oxygen reduction reaction (ORR) has limited the development of ZAB technology. In this study, a hollow carbon catalyst, NOC-1000-1, was prepared by pyrolysis of a mixture of a N-enriched Zn/bispyrozolate-based metal-organic framework and urea to replace the labile Pt-based catalysts for ORR. The employment of sacrifical urea eliminated the requirement for complicated post-treatment compared to the template method. Combined with self-activation (Zn evaporation), the obtained carbon showed a micro- and mesopore-dominant hierarchical structure coexisting with some macropores. Moreover, the doped N and O species were also tailored in a preferable configuration for ORR by simply screening the pyrolysis conditions. Under the synergistic effect of the preferable N and O configurations and pore structure, the derived carbon catalyst displayed superior ORR activity of 0.977 V onset potential and 0.867 V half-wave potential; these values are slightly better than those of the 20% Pt/C benchmark catalyst (0.985 and 0.861 V, respectively). Flexible solid-state ZABs were further assembled by employing the derived carbon catalyst as an air-cathode, and they exhibited a higher peak power density of 100.92 mW cm-2 than a 20% Pt/C-RuO2 battery as well as previously reported similar batteries and very high stability for up to 30 h. The flexible solid-state ZABs could drive a red light-emitting diode and run a 130-type motor for hours, which indicates their promising applications in real-world technologies.
Collapse
Affiliation(s)
- Qianjie Xie
- College of Food Science and Engineering, Northwest University, No. 229 Taibai North Road, 710069 Xi'an, Shaanxi, China.
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, No. 1, Xuefu Road, 710127 Xi'an, Shaanxi, China.
| | - Wenfang Si
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, No. 1, Xuefu Road, 710127 Xi'an, Shaanxi, China.
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, No. 1, Xuefu Road, 710127 Xi'an, Shaanxi, China.
| | - Zheng Wang
- College of Food Science and Engineering, Northwest University, No. 229 Taibai North Road, 710069 Xi'an, Shaanxi, China.
| | - Hiroshi Uyama
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, No. 1, Xuefu Road, 710127 Xi'an, Shaanxi, China.
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| |
Collapse
|