1
|
Xu J, Li Y, Yan F. Constructed MXene matrix composites as sensing material and applications thereof: A review. Anal Chim Acta 2024; 1288:342027. [PMID: 38220263 DOI: 10.1016/j.aca.2023.342027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 01/16/2024]
Abstract
Most studies on MXene matrix composites for sensor development have primarily focused on synthesis and application. Nevertheless, there is currently a lack of research on how the introduction of different materials affects the sensing properties of these composites. The rapid development of MXene has raised intriguing questions about improving sensor performance by combining MXene with other materials such as polymers, metals and inorganic non-metals. This review will concentrate on the construction of MXene-based composites and explore ways to enhance their sensor applications. Specifically, this review describes why the introduction of materials to the system brings the advantage of low concentration and high sensitivity assays, as well as the MXene-based frameworks that have been recently investigated. Lastly, in order to capture the current trend of MXene-based composites in sensor applications and identify promising research directions, this review will critically evaluate the potential applications of newly developed MXene systems.
Collapse
Affiliation(s)
- Jinyun Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, PR China; School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, PR China
| | - Yating Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, PR China; School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, PR China
| | - Fanyong Yan
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, PR China; School of Pharmaceutical Sciences, Tiangong University, Tianjin, 300387, PR China.
| |
Collapse
|
2
|
Chen Y, Jiang H, Liu X, Wang X. Engineered Electrochemiluminescence Biosensors for Monitoring Heavy Metal Ions: Current Status and Prospects. BIOSENSORS 2023; 14:9. [PMID: 38248386 PMCID: PMC10813191 DOI: 10.3390/bios14010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Metal ion contamination has serious impacts on environmental and biological health, so it is crucial to effectively monitor the levels of these metal ions. With the continuous progression of optoelectronic nanotechnology and biometrics, the emerging electrochemiluminescence (ECL) biosensing technology has not only proven its simplicity, but also showcased its utility and remarkable sensitivity in engineered monitoring of residual heavy metal contaminants. This comprehensive review begins by introducing the composition, advantages, and detection principles of ECL biosensors, and delving into the engineered aspects. Furthermore, it explores two signal amplification methods: biometric element-based strategies (e.g., HCR, RCA, EDC, and CRISPR/Cas) and nanomaterial (NM)-based amplification, including quantum dots, metal nanoclusters, carbon-based nanomaterials, and porous nanomaterials. Ultimately, this review envisions future research trends and engineered technological enhancements of ECL biosensors to meet the surging demand for metal ion monitoring.
Collapse
Affiliation(s)
| | | | | | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.C.); (H.J.); (X.L.)
| |
Collapse
|
3
|
Dong J, Ding Y, Zhou Y. Synthesis and comparison study of electrochemiluminescence from mononuclear and corresponding heterodinuclear Ir-Ru complexes via an amide bond as a bridge. Dalton Trans 2022; 51:15031-15039. [PMID: 36112029 DOI: 10.1039/d2dt02524h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mononuclear iridium-based complex with a primary amine group (named Ir-NH2), a mononuclear ruthenium-based complex with a butanoic acid group (named Ru-COOH) and the corresponding heterodinuclear complex containing an iridium and ruthenium center via an amide bond bridge (named Ir-Ru) were designed and successfully synthesized in this study. The photophysical and electrochemical properties and ECL performances of these three metal complexes under various experimental conditions were well characterized. For the first time, the insights from this comprehensive comparison study indicate that the two metal-based subunits with comparable luminescent properties are significant in the design of bimetallic-based multicolor luminophores at the molecular level, which helps us to further understand the emission performances of bimetallic complexes and to rationally design more efficient corresponding organometallic luminophores with multicolor emission for wide applications in the future.
Collapse
Affiliation(s)
- Jianhua Dong
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Yangming Ding
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Yuyang Zhou
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
4
|
Zhai H, Wang Y, Yin J, Zhang Y, Guo Q, Sun X, Guo Y, Yang Q, Li F, Zhang Y. Electrochemiluminescence biosensor for determination of lead(II) ions using signal amplification by Au@SiO 2 and tripropylamine-endonuclease assisted cycling process. Mikrochim Acta 2022; 189:317. [PMID: 35930068 DOI: 10.1007/s00604-022-05429-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/08/2022] [Indexed: 01/18/2023]
Abstract
MXene@Au as the base and Au@SiO2 as signal amplification factor were used for constructing an ultrasensitive "on-off" electrochemiluminescence (ECL) biosensor for the detection of Pb2+ in water. The use of MXene@Au composite provided a good interface environment for the loading of tris(2,2-bipyridyl)ruthenium(II) (Ru(bpy)32+) on the electrode. Based on resonance energy transfer, the Au (core) SiO2 (shell) (Au@SiO2) nanoparticles stimulate electron transport and promote tripropylamine (TPrA) oxidation. The luminescence effect of Au@SiO2 was five times that of AuNPs and SiO2 nanomaterials alone, and the ECL intensity was greatly improved. In addition, Pb2+ activated the aptamer to exert its endonuclease activity, which realized the signal cycle amplification in the process of Pb2+ detection. When Pb2+ was added, the ECL signal weakened, and the Pb2+ concentration was detected according to the decreased ECL intensity. Under optimized experimental conditions, this aptamer sensor for Pb2+ has a wide detection range (0.1 to 1 × 106 ng L-1) and a low detection limit (0.059 ng L-1). The relative standard deviation (RSD) of the sensor is 0.39-0.99%, and the recovery of spiked standard is between 90.00 and 125.70%. The sensor shows good selectivity and high sensitivity in actual water sample analysis. This signal amplification strategy possibly provides a new method for the detection of other heavy metal ions and small molecules.
Collapse
Affiliation(s)
- Hongguo Zhai
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, China.,Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, China.,Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, China
| | - Yue Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, China.,Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, China.,Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, China
| | - Jiaqi Yin
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, China.,Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, China.,Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, China
| | - Yuhao Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, China.,Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, China.,Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, China
| | - Qi Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, China.,Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, China.,Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, China.,Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, China.,Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, China.,Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, China.,Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, China
| | - Qingqing Yang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, China.,Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, China.,Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, China
| | - Falan Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, China.,Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, China.,Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, China
| | - Yanyan Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, China. .,Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, China. .,Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, China.
| |
Collapse
|