1
|
Han Y, Lei Y, Ni J, Zhang Y, Geng Z, Ming P, Zhang C, Tian X, Shi JL, Guo YG, Xiao Q. Single-Crystalline Cathodes for Advanced Li-Ion Batteries: Progress and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107048. [PMID: 35229459 DOI: 10.1002/smll.202107048] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Single-crystalline cathodes are the most promising candidates for high-energy-density lithium-ion batteries (LIBs). Compared to their polycrystalline counterparts, single-crystalline cathodes have advantages over liquid-electrolyte-based LIBs in terms of cycle life, structural stability, thermal stability, safety, and storage but also have a potential application in solid-state LIBs. In this review, the development history and recent progress of single-crystalline cathodes are reviewed, focusing on properties, synthesis, challenges, solutions, and characterization. Synthesis of single-crystalline cathodes usually involves preparing precursors and subsequent calcination, which are summarized in the details. In the following sections, the development issues of single-crystalline cathodes, including kinetic limitations, interfacial side reactions, safety issues, reversible planar gliding and micro-cracking, and particle size distribution and agglomeration, are systematically analyzed, followed by current solutions and characterization techniques. Finally, this review is concluded with proposed research thrusts for the future development of single-crystalline cathodes.
Collapse
Affiliation(s)
- Yongkang Han
- School of Automotive Studies & Clean Energy Automotive Engineering Center, Tongji University (Jiading Campus), 4800 Cao'an Road, Shanghai, 201804, P. R. China
| | - Yike Lei
- School of Automotive Studies & Clean Energy Automotive Engineering Center, Tongji University (Jiading Campus), 4800 Cao'an Road, Shanghai, 201804, P. R. China
| | - Jie Ni
- School of Automotive Studies & Clean Energy Automotive Engineering Center, Tongji University (Jiading Campus), 4800 Cao'an Road, Shanghai, 201804, P. R. China
| | - Yingchuan Zhang
- School of Automotive Studies & Clean Energy Automotive Engineering Center, Tongji University (Jiading Campus), 4800 Cao'an Road, Shanghai, 201804, P. R. China
| | - Zhen Geng
- School of Automotive Studies & Clean Energy Automotive Engineering Center, Tongji University (Jiading Campus), 4800 Cao'an Road, Shanghai, 201804, P. R. China
| | - Pingwen Ming
- School of Automotive Studies & Clean Energy Automotive Engineering Center, Tongji University (Jiading Campus), 4800 Cao'an Road, Shanghai, 201804, P. R. China
| | - Cunman Zhang
- School of Automotive Studies & Clean Energy Automotive Engineering Center, Tongji University (Jiading Campus), 4800 Cao'an Road, Shanghai, 201804, P. R. China
| | - Xiaorui Tian
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ji-Lei Shi
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yu-Guo Guo
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qiangfeng Xiao
- School of Automotive Studies & Clean Energy Automotive Engineering Center, Tongji University (Jiading Campus), 4800 Cao'an Road, Shanghai, 201804, P. R. China
| |
Collapse
|